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ABSTRACT

Recent years have seen a rapid proliferation of information sources e.g., on the World-wide

Web, in virtually every area of human endeavor. Such autonomous information sources are

based on different ontologies, i.e., conceptualizations of the entities, properties, and relation-

ships in the respective domains of discourse. However, practical applications (e.g., building

predictive models from disparate data sources, assembling composite web services using com-

ponents from multiple repositories) call for mechanisms that bridge the semantic gaps between

disparate ontologies using mappings that express terms (concepts, properties, and relation-

ships) in a target ontology in terms of those in one or more source ontologies. Such mappings

may be established by domain experts or automatically using tools designed to discover such

mappings from data. In either case, it is necessary to check whether the resulting mappings

are consistent, and if necessary, make them consistent by eliminating a subset of the map-

pings. We consider the problem of identifying the largest (maximum) subset of mappings

in the restricted, yet practically important setting of hierarchical ontologies. Specifically, we

consider mappings that assert that a concept in one ontology is a subconcept, superconcept,

or equivalent concept of a concept in another ontology. We model the problem of identifying

the largest consistent subset of such mappings between hierarchical ontologies as the prob-

lem of identifying the minimum feedback arc set in a directed acyclic graph (DAG). Because

identifying minimum feedback arc set is known to be NP-hard, it follows that identifying the

maximum subset of consistent mappings between hierarchical ontologies is NP-hard. We then

explore several polynomial time algorithms for finding suboptimal solutions including a heuris-

tic algorithm for (weighted) minimum feedback arc set problem in DAGs. We compare the

performance of the various algorithms on several synthetic as well as real-world ontologies and
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mappings.
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CHAPTER 1. INTRODUCTION

With the advent of the World Wide Web, there has been a pressing need for tools to

handle the massive amount of distributed information as well as their integration. One of

the most important fields of computing research that attempts to address this problem is the

Semantic Web [Antoniou and Harmelen, 2008], which deals with how information is organized,

understood and reasoned about by various parties and autonomous agents participating in the

Web.

Of key interest to Semantic Web research is the semantic description of information. Due to

the distributed nature of the Web, actors often want to share information among themselves.

Naturally, this leads to the problem of information heterogeneity, which comes in the way

of seamless sharing and reuse of information. In order for two actors to be able to share

heterogeneous information in a common domain of interest, it is imperative that they come to

a common understanding of the domain.

Information integration is a process of merging information from multiple sources. Match-

ing – the process of identifying the correspondences between semantically related entities of

the difference sources – is seen as a plausible solution for these kind of applications [Euzenat

and Shvaiko, 2007]. Heterogeneity between multiple sources increase the difficulty of merging

the information; and in distributed and open systems, such as semantic web, it is not possible

to avoid heterogeneity.

1.1 Background

Before we discuss about the problem that we are addressing through this work, we will

introduce a few basic concepts and terminologies in this section.
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1.1.1 Ontology

Over the years, ontologies [Colomb, 2007] have emerged as the de facto choice for describing

information semantics over the Web, using which one can attach semantics to his data. An

ontology can be used within a domain to formally represent a set of concepts and the relation-

ships between those concepts. It can be used both as a knowledge representation technique

as well as to define the domain itself. Once the ontology is defined, it can be used to reason

about the properties of that domain. In simple terms, an ontology is a “specification of a con-

ceptualization” [Gruber, 1993]. Each ontology contains a set of primitive entities that can be

used to model the domain that it represents. These entities primarily consist of the following:

• Classes or concepts represent the collections or types of objects or individuals. These

are the main entities of an ontology.

• Relationships represent the set of relations or ways in which various classes are related

to each other within the ontology

• Individuals or class instances represent a particular instance of a class in a domain.

• Attributes are used to capture the properties or characteristics of the classes

At its barest of essentials, an ontology can be viewed as describing concepts in a domain of

interest and a classification of concepts in the domain. Hence, an ontology can also be defined

as a set of concepts represented by classes and a classification of the concepts represented by

relationships. Therefore, the classes and relationships capture the essential structure of the

ontology, while attributes add supplementary information. There have been other extended

representations of ontologies, that also consider axioms and other entities as part of an ontology

specification. In this work, we restrict our treatment to partial order ontologies, i.e., ontologies

specified by a set of concepts and an associated set of relationships that define a partial order

over the concepts in the ontology [Bonatti et al., 2003].

For the rest of our discussion, we will assume concepts to represent named entities in the

domain, and relationships to represent binary relations specifying one of subclass, equivalence
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or superclass, meaning that a concept is a specialization of, equivalent to or generalization of

another concept respectively.

Various languages can be used to encode ontologies. OWL1 is a W3C recommended lan-

guage to represent ontologies. Although our work is not coupled with any ontology specification

language, for the purpose of experimental evaluation of our work, we use OWL as the language

of choice for ontology specification.

1.1.2 Combining Two Ontologies

Having seen that ontologies can be used effectively for sharing and reusing knowledge about

information in the Web, the next question arises: how do we use the combined knowledge (in

the form of ontology specification) of multiple entities? The task of combining ontologies

of multiple actors in the Web, by bridging the semantic gap between their descriptions is

crucial to realize the goal of Semantic Web — to enable seamless information integration over

heterogeneous information sources.

There are several ways in which two ontologies can be combined. For example, Ontology

merging is the process of generating a new ontology by combining two ontologies. The source

ontologies may be overlapping with each other and after ontology merging they still remain

unchanged. Apart from the information contained by both the source ontologies, the merged

ontology contains additional information generated while merging. A slightly different pro-

cess is ontology integration, which is the process of integrating one ontology within another

ontology. After integration one of the ontology remains unchanged while the other ontology,

after integration, contains the information of both of them. There are more ways in which

two ontologies can be combined. Please refer [Euzenat and Shvaiko, 2007] for a discussion of

various processes. The basic requirement for combining two ontologies is the knowledge about

how to combine them. This process of finding relationships between classes of two ontologies is

called ontology matching. These identified relationships are often called alignment or mapping.

1http://www.w3.org/TR/owl-features/
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1.1.3 Problem

In this work, however, we focus our attention on the process of combining two ontologies

using a set of already specified mappings between them. We do not try to identify how those

mappings were identified.

Given any two ontologies and a user specified mapping set that specifies relationships

between the classes of the two ontologies, we are interested in automatically identifying which

of the mappings from the given mapping set can be used to combine the two ontologies such

that the resulting ontology still remains consistent (does not contain contradictory knowledge

such as, a concept is a subclass of itself).

In other words, given two consistent ontologies and a set of mappings between them, we are

interested in methods to obtain a maximum subset of mappings such that when this mapping

subset is used to combine the two ontologies, the resulting ontology still remains consistent.

1.2 Related Work

In the past, many (semi-) automated ways of generating these mappings have been pro-

posed. They use various approaches to identify the mappings. For example, schema-based

systems perform matching on the basis of schema level input. Another type of systems are

instance-based and they rely on the instances or the data expressed by the ontology. Another

type of systems combine both these approaches. A detailed study of these approaches is done

in [Euzenat and Shvaiko, 2007].

Several tools have been developed using these techniques. A survey of these tools has been

done by [Kalfoglou and Schorlemmer, 2003; Choi et al., 2006] and a detailed list of tools can be

found at [Euzenat and Shvaiko, 2007, chap. 6]. Most of these approaches deal with automat-

ically identifying the a set of mappings between two ontologies in order to facilitate sharing

and reuse of knowledge. It must be noted that many approaches focus only on identifying

a mapping set without worrying about the consistency of the merged ontology. In particu-

lar, [Falconer and Storey, 2007] deal with identifying mappings followed by user intervention

where a user manually corrects the generated mappings. In fact, user involvement in ensuring
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consistency of mapping, specially in large ontologies, has been identified as one of the major

challenges in ontology matching [Shvaiko and Euzenat, 2008].

To the best of our knowledge, there has been no work on identifying maximum mapping sets

that ensure consistency. In this context, our work tries to address this problem of combining

the ontologies by identifying the maximum subset of already identified mappings (for e.g.

mappings identified by semi-automatic tools mentioned above) that ensures the consistency of

the combined ontology. Our approach concerns with identifying quantitatively more mappings

from the given set and is quality-agnostic, that is, we do not deal with the qualitative aspects

of the mappings.

1.3 Contributions

Our contributions can be summarized as follows:

• We present the problem of identifying the maximum subset of a given mapping set that

can be used to combine two consistent ontologies such that the resulting ontology also

remains consistent.

• We prove that the problem is NP-hardusing a known hard problem in the graph domain.

• We discuss several polynomial time computable algorithms for finding suboptimal solu-

tions of this problem. In particular we model the problem as a minimum feedback arc

set problem in the graph domain and use a known heuristic to solve our problem.

• We compare the performance of our algorithms on several synthetic and real-world on-

tologies and mappings.

1.4 Organization

The remaining dissertation has been organized as follows:

• Chapter 2 formally describes the problem within our scope. We describe the terms

ontology, mapping, and consistency as we refer them. Then we describe the problem
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statement and show that it is NP-hard.

• Chapter 3 is concerned with the various methods to solve the problem. We describe how

we can represent our problem as an equivalent graph problem. Then we discuss a couple

of simple heuristics and a graph-based heuristic that can all compute a solution for our

problem in polynomial time.

• Chapter 4 presents our results. We compare the accuracy of our solution against the

optimal solution. We also compare the various heuristics against each other.

• Chapter 5 summarizes our work.

• Appendix A summarizes the various notations that we use across all the chapters.

• Appendix B extends the scope of our problem by introducing some complex mappings.

We also discuss a possible modification for our algorithm to solve the enhanced problem.
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CHAPTER 2. PROBLEM DESCRIPTION

In this chapter we will formally describe the problem that we are trying to solve. Before

introducing the problem, we will describe a few important terms and how we will refer them

in this work.

2.1 Ontology

Definition 2.1 (Class). A class or a concept represents the collection or type of objects or

individuals denoted by c.

Definition 2.2 (Relationship). Given a non-empty finite set of classes C = {c1, c2, . . . }, we

define a relationship r as a relation ciRcj between any two unique classes ci, cj ∈ C where R

is either of the following two relations:

≺ Subclass relation. ci ≺ cj represents that class ci is a subclass of another class cj where

≺ is a strict partial order relation, that is, all the following hold true:

– Irreflexive. ¬ (ci ≺ ci)

– Asymmetric.
(
ci ≺ cj

)
⇒ ¬

(
cj ≺ ci

)
– Transitive.

(
ci ≺ cj ∧ cj ≺ ck

)
⇒ (ci ≺ ck)

Sometimes, we also say that cj is a super class of ci and represent it as cj � ci. We note

that (
ci ≺ cj

)
⇔
(
cj � ci

)
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≡ Equivalence relation. ci ≡ cj represents that class ci is conceptually equivalent to

another class cj where ≡ is an equivalence1 relation, that is, all the following hold true:

– Reflexive. (ci ≡ ci)

– Symmetric.
(
ci ≡ cj

)
⇒
(
cj ≡ ci

)
– Transitive.

(
ci ≡ cj ∧ cj ≡ ck

)
⇒ (ci ≡ ck)

Sometimes, we also say that ci and cj are equivalent classes.

Furthermore, the subclass relation and the equivalence relation are related as follows:(
ci ≺ cj ∧ cj ≡ ck

)
⇒ (ci ≺ ck) (2.1a)(

ci ≺ cj ∧ ci ≡ ck
)
⇒
(
ck ≺ cj

)
(2.1b)(

ci ≺ cj ∧ cj ≺ ci
)
;
(
ci ≡ cj

)
(2.1c)(

ci ≡ cj
)
;
(
ci ≺ cj ∧ cj ≺ ci

)
(2.1d)

Definition 2.3 (Ontology). An ontology is a two-tuple of a set of classes and a set of rela-

tionships between those classes denoted by Ox : 〈Cx, Rx〉 where x ∈ N and,

Cx is a non-empty finite set of classes in ontology Ox, that is, Cx = {cx1, cx2, . . . }

Rx is a finite set of relationships in ontology Ox, that is, Rx = {rx1, rx2, . . . }

Example 2.1. For example, consider a very simple ontology that contains three classes a, b,

and c, and two relationships specifying that a is a subclass of b and b is equivalent to c.

O1 :
〈
{a, b, c} , {a ≺ b, b ≡ c}

〉
Example 2.2. Now, consider the following example ontology extracted from the animalsA2

ontology [Ehrig and Sure, 2005]:

Oa :

〈 Woman, Female, Person,

HumanBeing, Animal

 ,


Woman ≺ Female, Woman ≺ Person,

Female ≺ Animal, Person ≺ Animal,

Person ≡ HumanBeing


〉

1We use the term equivalence in this context to represent the conceptual equivalence between two classes. It
turns out that in our setting this binary relation is also mathematically an equivalence relation.

2Complete ontology at http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/animalsA.owl.

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/animalsA.owl
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We can observe that

Ca = {Woman, Female, Person, HumanBeing, Animal}

that is, Oa contains five classes, viz, Woman, Female, Person, HumanBeing and Animal

and

Ra =

 Woman ≺ Female, Woman ≺ Person, Female ≺ Animal,

Person ≺ Animal, Person ≡ HumanBeing


that is, Oa contains five relationships, viz. Woman is a subclass of Female, Woman is a

subclass of Person, Female is a subclass of Animal, Person is a subclass of Animal, and

Person is a equivalent to HumanBeing.

Remark. We will conveniently use O to represent a set of all such ontologies, that is, O =

{O1,O2, . . . }

2.2 Ontology Graph

We can also represent each ontology as a graph that we refer to as an ontology graph. Given

any ontology Ox : 〈Cx, Rx〉 the corresponding ontology graph is GOx : 〈VOx , EOx〉 where,

VOx is a non-empty finite set of vertices in the ontology graph of ontology Ox, that is, VOx =

{vx1, vx2, . . . }

vxi is the ith vertex in the ontology graph of ontology Ox

Each vertex vxi represents a non-empty finite set of equivalent classes in Cx, that is,

vxi =
{
cxi1 , c

x
i2
, . . .

}
where cxim ∈ Cx and such that exactly one of the following two

conditions is true:

1. vxi is a singleton set and the only class contained in this set is not related to any

other class in Cx with the equivalence relation, that is, if vxi =
{
cxj

}
then,

(
|vxi | = 1

)
∧
(
∀cxk ∈ Cx :

(
cxj ≡ cxk /∈ Rx ∧ cxk ≡ cxj /∈ Rx

))
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2. Cardinality of vxi is more than 1 and each class in vxi is related to at least one other

class in vxi with the equivalence relation, that is, if vxi =
{
cxi1 , c

x
i2
, . . .

}
then,

(
|vxi | > 1

)
∧
(
∀cxim ∈ v

x
i ∃cxin ∈ v

x
i :
(
cxim ≡ c

x
in ∈ Rx ∨ cxin ≡ c

x
im ∈ Rx

))
EOx is a finite set of directed ontology edges in the ontology graph of ontology Ox, that is,

EOx = {ex1, ex2, . . . }

exp is the pth directed ontology edge in the ontology graph of ontology Ox

Each edge exp represents a subclass relation such that there is a directed edge from

the vertex containing the subclass to the vertex containing the super class, that is, if(
exp = vxi 99K vxj

)
then,

∃cxim ∈ v
x
i , ∃cxjn ∈ v

x
j : cxim ≺ c

x
jn ∈ Rx

As per this description of the ontology graph, we can easily identify the following property

of the ontology graph:

Property 2.1. For any ontology Ox : 〈Cx, Rx〉, corresponding ontology graph GOx : 〈VOx , EOx〉

contains at most |Cx| vertices and at most |Rx| edges, that is,

|VOx | ≤ |Cx| and |EOx | ≤ |Rx|

Example 2.3. For example, again consider ontology O1 :
〈
{a, b, c} , {a ≺ b, b ≡ c}

〉
. The

corresponding ontology graph GO1 is shown in Figure 2.1.

Figure 2.1: Ontology Graph GO1
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2.2.1 Construction

Given some ontology Ox : 〈Cx, Rx〉, the corresponding ontology graph GOx : 〈VOx , EOx〉

can be generated using the following simple steps:

1. We will represent each set of equivalent classes as a single unique vertex. Therefore, we

have:

(
cxi ≡ cxj ∈ Rx

)
⇔ ∃vxl ∈ VOx :

((
cxi , c

x
j ∈ vxl

)
∧
(
∀vxl′ ∈ VOx : cxi , c

x
j /∈ vxl′

))
(
cxi ≡ cxj ∈ Rx ∧ cxi ≡ cxk ∈ Rx

)
⇔ ∃vxl ∈ VOx :

((
cxi , c

x
j , c

x
k ∈ vxl

)
∧
(
∀vxl′ ∈ VOx : cxi , c

x
j , c

x
k /∈ vxl′

))

Remark. We are only representing the classes and relationships between the classes. We

are not concerned with the other entities of the ontology and they remain unchanged.

When we use a single vertex to represent multiple classes, we do not worry about the

attributes of those classes. The ontology still remains the same. We are combining the

equivalent classes in a single vertex for simplicity.

2. For each class not covered in earlier step, we create a vertex each such that each vertex

is a singleton set, containing only that class.

3. For each subclass relation (≺), we add a directed edge (99K), from the subclass to the

super class. Therefore, we have:

(
cxim ≺ c

x
jn ∈ Rx

)
⇔ ∃vxi , vxj ∈ VOx :

(
cxim ∈ v

x
i

)
∧
(
cxjn ∈ v

x
j

)
∧
(
vxi 99K vxj ∈ EOx

)
Algorithm 2.1 shows an algorithm to construct GOx : 〈VOx , EOx〉 from Ox : 〈Cx, Rx〉. In

the algorithm we look at each relationship at a time and based on the type of relation we

create corresponding vertices and edge.

2.2.2 Complexity

In this construction, each class and each relationship is accessed once. Hence, it has a

running time of O (|C|+ |R|).
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Algorithm 2.1 Generating ontology graph GOx from ontology Ox

Require: Ox : 〈Cx, Rx〉
1: GOx : 〈VOx , EOx〉, VOx

:= ∅, EOx
:= ∅

2: C := Cx // temporary //

// cxi ≡ cxj results into a single vertex holding both of them //

3: for all cxi ≡ cxj ∈ Rx do

4: if ∃vxl ∈ VOx such that cxi ∈ vxl then

5: vxl := vxl
⋃{

cxj

}
6: else if ∃vxl ∈ VOx such that cxj ∈ vxl then

7: vxl := vxl
⋃{

cxi
}

8: else

9: vxl :=
{
cxi , c

x
j

}
, VOx

:= VOx

⋃
{vxl }

10: end if

11: C := C \
{
cxi , c

x
j

}
12: end for

// Create a vertex with singleton set for all the remaining classes //

13: for all cxi ∈ C do

14: vxl :=
{
cxi
}

, VOx
:= VOx

⋃
{vxl }

15: end for

// cxi ≺ cxj results into a directed edge //

16: for all cxi ≺ cxj ∈ Rx do

17: Search vxi′ ∈ VOx such that cxi ∈ vxi′
18: Search vxj′ ∈ VOx such that cxj ∈ vxj′
19: EOx

:= EOx

⋃{
vxi′ 99K v

x
j′

}
20: end for

2.2.3 Function vertex

It is obvious from our construction that even though a vertex may contain multiple classes,

each class is contained in one and only one vertex, that is,

(
cxi ∈ Cx

)
⇔ ∃vxj ∈ VOx :

((
cxi ∈ vxj

)
∧
(
∀vxj′ ∈ VOx : cxi /∈ vxj′

))
Based on this property, we now define a following useful function to obtain a vertex of any

given class.

Definition 2.4 (vertex). For any ontology Ox and the ontology graph GOx , we define a

function vertex: Cx
onto−−→ VOx as follows:

vertex
(
cxi
)

= vxj such that cxi ∈ vxj
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vertex is clearly a polynomial time computable function.

Simplifying Assumption. We can easily note here that we are actually merging all the

equivalent classes in an ontology into a single vertex in the corresponding ontology graph.

Since this merging is just the conceptual merging in the representation and not the actual

merging of classes in the ontology, for simplicity, we will assume that the input ontologies

do not contain any equivalence relationships. That is, all the relationships contained in the

ontology are only the subclass relationships.

This implies that there is a unique vertex in the ontology graph such that each vertex is a

singleton and each vertex corresponds to a particular unique class in the ontology. Hence, the

Property 2.1 reduces to:

|VOx | = |Cx| and |EOx | = |Rx|

Moreover, the definition of the function vertex also changes as follows:

vertex: Cx
1:1−−→ VOx such that vertex

(
cxi
)

= vxi =
{
cxi
}

2.3 Consistency in Ontology

Definition 2.5 (Inconsistent). An ontology Ox : 〈Cx, Rx〉 is said to be inconsistent, if the

transitive closure of Rx contains two or more relationships that contradict each other. Alter-

natively, an ontology Ox : 〈Cx, Rx〉 is said to be inconsistent, if the transitive closure of Rx

contains cxi ≺ cxi .

Each subset of relationships that lead to some relationship cxi ≺ cxi in the transitive closure

of the ontology is said to be a set of conflicting relationships. For any inconsistent ontology

there may be one or more sets of conflicting relationships and each set may contain two or

more relationships that conflict as a whole.

Definition 2.6 (Consistent). An ontology Ox : 〈Cx, Rx〉 is said to be consistent if it is not

inconsistent.
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Example 2.4. Consider some ontology O2 :
〈
{a, b, c} , {a ≺ b, b ≺ c}

〉
. We can observe that

the closure is {a ≺ b, b ≺ c, a ≺ c}. Since the closure does not contain any relationship cxi ≺ cxi

for i ∈ {a, b, c}, hence O2 is consistent.

Example 2.5. Consider an ontology O3 :
〈
{a, b, c, d} , {a ≺ b, c ≺ a, d ≺ b, d ≺ c, a ≺ d}

〉
.

The corresponding ontology graph GO3 is shown in Figure 2.2.

Figure 2.2: Ontology Graph GO3

We can observe that the closure is {a ≺ b, c ≺ a, d ≺ b, d ≺ c, a ≺ d, a ≺ a, c ≺ c, d ≺ d}.

Since the closure contains relationships a ≺ a, c ≺ c, etc. hence, the ontology O3 is an

inconsistent. Moreover, the only set of conflicting relationships is {c ≺ a, d ≺ c, a ≺ d}.

Theorem 2.1. An ontology Ox is consistent if and only if its ontology graph GOx is a directed-

acyclic graph (DAG).

Proof. The proof is very simple since there is a one-to-one mapping between classes and rela-

tionships in ontology to vertices and edges in ontology graph.

⇒ First, we will try to prove that an ontology Ox is consistent if its ontology graph GOx is a

DAG. In order to do so, let us assume by contradiction that Ox is a consistent ontology

such that GOx is not a DAG.

1. Since GOx is not a DAG, there must be at least one cycle in GOx . Let 〈vx1, vx2, . . . , vxn〉

denote any cycle such that vx1, v
x
2, . . . , v

x
n ∈ VOx and vx1 99K vx2, v

x
2 99K vx3, . . . , v

x
n−1 99K

vxn, v
x
n 99K vx1 ∈ EOx
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2. vx1 99K vx2 ⇒ cx1 ≺ cx2,

vx2 99K vx3 ⇒ cx2 ≺ cx3,

· · · ,

vxn−1 99K vxn ⇒ cxn−1 ≺ cxn

vxn 99K vx1 ⇒ cxn ≺ cx1

3. Hence, we have, cx1 ≺ cx2 ≺ cx3 ≺ · · · ≺ cxn−1 ≺ cxn ≺ cx1 and by transitivity we have,

cx1 ≺ cx1, cx2 ≺ cx2, and so on.

4. However, this relationship is not allowed in a consistent ontology. Hence, we get a

contradiction. Thus, our assumption is invalid, that is, GOx must not contain any

cycle. In other words, GOx must be a DAG.

⇐ Now, we will prove that if an ontology graph GOx is DAG then the ontology Ox is

consistent. Let us assume by contradiction that GOx is a DAG such that Ox is inconsistent

ontology.

1. Since Ox is inconsistent, there must be at least one set of conflicting relationships

in Ox. Let,
{
cx1 ≺ cx2, cx2 ≺ cx3, · · · , cxn−1 ≺ cxn, cxn ≺ cx1

}
be the a set of conflicting

relationships.

2. cx1 ≺ cx2 ⇒ vx1 99K vx2,

cx2 ≺ cx3 ⇒ vx2 99K vx3,

· · · ,

cxn−1 ≺ cxn ⇒ vxn−1 99K vxn,

cxn ≺ cx1 ⇒ vxn 99K vx1

3. Hence, we have, vx1 99K vx2 99K vx3 99K · · · 99K vxn−1 99K vxn 99K vx1 and thus,

〈vx1, vx2, . . . , vxn〉 is a cycle.

4. We got a contradiction and therefore, GOx is not a DAG. Thus, our assumption that

Ox is inconsistent is invalid and this implies that Ox is consistent.

Hence, we have proved that an ontology Ox is consistent if and only if its ontology graph

GOx is a directed-acyclic graph (DAG).
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Definition 2.7 (consistent). We define a function consistent : O −→ {>,⊥} as follows3:

consistent (Ox) =

 > if GOx is DAG

⊥ otherwise

Therefore, the function consistent can be implemented using the topological ordering algo-

rithm with a running time of O (|V|+ |E|) where |V| is the number of vertices and |E| is the

number of edges in the graph [Kleinberg and Tardos, 2005]. Alternatively, we have a running

time of O (|C|+ |R|) where |C| is the number of classes and |R| is the number of relationships

in the ontology.

In Example 2.4 consistent (O2) = > and in Example 2.5 consistent (O3) = ⊥.

2.4 Mapping

Definition 2.8 (Mapping Relationship). Given any two different ontologies Ox : 〈Cx, Rx〉

and Oy : 〈Cy, Ry〉, a mapping relationship rx:y is a relationship cxiRc
y
j between any two classes

cxi ∈ Cx, c
y
j ∈ Cy where R is either of the following4:

≺ Subclass relation. cxi ≺ c
y
j represents that class cxi is subclass of another class cyj

� Super class relation. cxi � c
y
j represents that class cxi is super class of another class cyj

≡ Equivalence relation. cxi ≡ c
y
j represents that class cxi is equivalent to another class cyj

We note that the properties of the relations are as defined in Section 2.1.

Definition 2.9 (Mapping Set). Given any two ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉,

a mapping set Mx:y is a set of mapping relationships, that is, Mx:y =
{
rx:y1 , rx:y2 , . . .

}
.

Example 2.6. Consider the following two ontologies:

O4 :
〈
{a, b, c} , {c ≺ b, b ≺ a}

〉
and O5 :

〈
{x, y, z} , {z ≺ y, y ≺ x}

〉
It is possible to have several mapping sets between these two ontologies. One possible mapping

set is M4:5 = {a � x, b � y, c ≡ z}.
3> denotes true and ⊥ denotes false
4It is possible to define a mapping relationship as a relation between two sets of classes on either ontologies.

We discuss those relationships and the changes required to be made to our solution in Appendix B.
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2.5 Problem Statement

Generally, there are several ways to combine two ontologies with the help of mappings,

resulting in a new ontology. For an overview of such methods please refer [Euzenat and

Shvaiko, 2007].

We can combine two ontologies, to generate a new combined ontology, using a mapping

set given between them. This combined ontology contains all the classes and the relationships

that were contained in the given ontologies. In addition, this ontology also contains all the

relationships specified by the mapping set. In literature this is also known as ontology merging.

Given any two ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉, and some mapping set Mx:y

we can generate a merged ontology Oz : 〈Cz, Rz〉 by adding the relationships specified in the

mapping set. We will often use OMx:y :
〈
CMx:y , RMx:y

〉
to represent a merged ontology that is

generated by combining the ontologies Ox and Oy using mapping set Mx:y. Unless specified

otherwise, we will also use the following additional notations:

|C| = |Cx|+ |Cy| to represent the total number of classes in the merged ontology

|R| = |Rx| + |Ry| to represent the total number of relationships in the original ontologies

(please note that this does not include the mapping relationships)

|M| = |Mx:y| represents the number of mapping relationships

2.5.1 Maximum Consistent Mapping Subset

Definition 2.10 (Consistent Mapping Subset). Given any two consistent ontologies Ox and

Oy, and some mapping set Mx:y, a subset M′x:y ⊆Mx:y is said to be a consistent mapping subset

if OM′
x:y

is a consistent5 ontology, that is, consistent
(
OM′

x:y

)
= >.

Example 2.7. Again consider the following two consistent ontologies

O4 :
〈
{a, b, c} , {c ≺ b, b ≺ a}

〉
and O5 :

〈
{x, y, z} , {z ≺ y, y ≺ x}

〉
5We will show in Section 3.3 how we can use the same consistent function to compute the consistency of a

merged ontology.
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and a mapping set M4:5 = {a � x, b � y, c ≡ z}. With the help of transitive closure, it is easy

to verify that all the following sets are consistent mapping subsets of M4:5:

• {}

• {a � x}

• {b � y}

• {c ≡ z}

• {a � x, b � y}

Definition 2.11 (Maximal Consistent Mapping Subset). Given any two consistent ontolo-

gies Ox and Oy, and some mapping set Mx:y, a consistent mapping subset M′x:y ⊆ Mx:y is

said to be a maximal consistent mapping subset if adding one more mapping to M′x:y will

make OM′
x:y

inconsistent. That is, M′x:y ⊆ Mx:y is a maximal consistent mapping subset if(
consistent

(
OM′

x:y

)
= >

)
and

∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
Example 2.8. In Example 2.7 the following two consistent mapping subsets are also maximal

consistent mapping subsets:

• {c ≡ z}

• {a � x, b � y}

As exemplified in Example 2.8, for any given pair of consistent ontologies and a mapping

set between those two ontologies, there can be multiple maximal consistent mapping subsets.

Moreover, either of these subsets may be of interest to the user and it is difficult to identify

the particular subset that the user may be interested in. One possible way in which the user

may specify preference is by specifying positive integral weight for each mapping such that a

mapping relationship with higher weight is preferred over the mapping relationship with lower

weight.
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Definition 2.12 (Weighted Mapping Set). Given ontologiesOx : 〈Cx, Rx〉 andOy : 〈Cy, Ry〉,

a weighted mapping set Mx:y is a set of mapping relationships, that is, Mx:y =
{
rx:y1 , rx:y2 , . . .

}
along with a weight function ω : Mx:y −→ N where N is the set of positive integers defined as

follows:

ω
(
rx:yp

)
= n where n ∈ N

Note. We will often use the following shorthand notation:

ωΣ (Mx:y) =
∑

∀rx:yp ∈Mx:y

ω
(
rx:yp

)
Example 2.9. Again, consider the following two ontologies:

O4 :
〈
{a, b, c} , {c ≺ b, b ≺ a}

〉
and O5 :

〈
{x, y, z} , {z ≺ y, y ≺ x}

〉
One possible weighted mapping set is M4:5 = {a � x, b � y, c ≡ z}, and

• ω (a � x) = 4

• ω (b � y) = 2

• ω (c ≡ z) = 3

Note. Here onwards, we assume that all our mapping set are weighted mapping set, that

is, they include a ω function. If the ω is not specified, then we assume the weight for each

mapping relationship to be a constant unit weight.

Definition 2.13 (Maximum Consistent Mapping Subset). Given any two consistent ontolo-

gies Ox and Oy, and some weighted mapping set Mx:y, a maximal consistent mapping subset

M′x:y ⊆Mx:y is said to be a maximum consistent mapping subset if sum of weights of the map-

pings is maximized. That is, M′x:y ⊆ Mx:y is a maximum consistent mapping subset if M′x:y is

a maximal consistent mapping subset and

∀M′′x:y ⊆Mx:y : ωΣ
(
M′x:y

)
≥ ωΣ

(
M′′x:y

)
where M′′x:y is a maximal consistent mapping subset.
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Again, for any given pair of consistent ontologies and a weighted mapping set between those

two ontologies, there can be multiple maximum consistent mapping subsets. Moreover, if the

weight of each mapping relationship is same, then it turns out that the maximum consistent

mapping subset is a maximal consistent mapping subset with the highest cardinality.

2.5.2 Optimization Version

Given two consistent ontologies Ox and Oy, and some weighted mapping set Mx:y, identify

a maximum consistent mapping subset M′x:y ⊆Mx:y. We denote this problem as McM.

McM: Given consistent Ox and Oy and some Mx:y, find a subset M′x:y ⊆Mx:y such that all the

following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ∀M′′x:y ⊆ Mx:y : ωΣ

(
M′x:y

)
≥ ωΣ

(
M′′x:y

)
where M′′x:y is a maximal consistent mapping

subset

Remark. Later, we will show how this problem can be modeled as a minimum feedback arc

set problem in a weighted directed graph.

2.5.3 Decision Version

Given two consistent ontologies Ox and Oy, some weighted mapping setMx:y, and a number

k ∈ N, is there a maximal consistent mapping subset M′x:y ⊆ Mx:y of weight at least k? We

denote this problem as McMd.

McMd : Given consistent Ox and Oy, some Mx:y, and some k ∈ N, is there M′x:y ⊆ Mx:y such

that all the following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ωΣ

(
M′x:y

)
≥ k
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2.6 Complexity

In this section we will show that the decision problem McMd is NP-complete and the

corresponding optimization problem is McM is NP-hard. We will show these results by reducing

a known NP-complete problem, namely, Minimum Feedback Arc Set in Bipartite Tournament

(MFASBT) [Guo et al., 2007] to our problem. We will now describe the feedback arc set.

2.6.1 Feedback Arc Set (FAS)

Given a directed graph G : 〈V, A〉 where V is the set of vertices and A is the set of directed

edges (arcs), feedback arc set of G is a subset of edges, A′ ⊆ A such that G′ : 〈V, A \ A′〉 is

acyclic. We will often use the shorthand G \ A′ to mean G′. In simple words, feedback arc

set of a directed graph is the set of those edges, which when removed from the directed graph

would leave the graph cycle-free, that is, a directed acyclic graph (DAG).

Example 2.10. Figure 2.3 shows an example. Figure 2.3(b) and Figure 2.3(c) show two

different subgraphs (DAGs) after removal of different feedback arc sets from the digraph shown

Figure 2.3(a).

(a) Graph with cycles (b) Graph without a FAS (c) Graph without MFAS

Figure 2.3: Example for Feedback Arc Set

2.6.2 Minimum Feedback Arc Set (MFAS)

Minimum feedback arc set (MFAS) problem for a directed graph is the problem of finding

a minimum set of edges (set with minimum cardinality) to be removed in order to break all

the cycles in the graph. Karp showed that this problem is NP-hard [Karp, 1972; Garey and
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Johnson, 1979]. A few years back it was shown that MFAS is NP-hard even for tournament

graphs [Alon, 2006; Charbit et al., 2007]. Soon after that it was shown that MFAS is NP-

complete even for bipartite tournament graphs [Guo et al., 2007]. We use the problem of

finding minimum feedback arc set in bipartite tournament (MFASBT) to prove the hardness

of McM.

Example 2.11. Figure 2.3 shows an example. Figure 2.3(c) is a subgraph after removing

the minimum feedback arc set from Figure 2.3(a).

Definition 2.14 (Bipartite Tournament). A tournament graph is a directed graph where

there is exactly one directed edge between each pair of vertices. In other words, it is some

directed orientation of a complete undirected graph. A bipartite tournament graph is a directed

orientation of a complete bipartite undirected graph. We will denote a bipartite tournament

graph as G : 〈X,A,Y〉 where X and Y are the bipartite sets of vertices and A is set of directed

edge between them.

Example 2.12. Figure 2.4 shows an example of a bipartite tournament graph with the

bipartite vertex sets being {x1, x2} and {y1, y2}.

Figure 2.4: Example for Bipartite Tournament Graph

2.6.3 Problem Complexity

Now, we are ready to prove the hardness of the decision problem McMd.

Theorem 2.2. McMd is NP-complete where

McMd : Given consistent Ox and Oy, some Mx:y, and some k ∈ N, is there M′x:y ⊆ Mx:y such

that all the following are true:
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1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ωΣ

(
M′x:y

)
≥ k

Proof. The proof is as follows:

• Proof for McMd ∈ NP . We prove this by showing a polynomial time computable

certifier below.

– Certificate. A certificate is any given subset M′x:y ⊆Mx:y.

– Certifier. The certifier returns yes if all the following conditions are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ωΣ

(
M′x:y

)
≥ k

Otherwise, it returns no.

• Known NP-complete problem. Now, we need to select a known NP-complete prob-

lem and then we will reduce it to our problem in polynomial time. We pick the problem

of identifying the minimum feedback arc set in a bipartite tournament [Guo et al., 2007]

specified as follows:

MFASBT: Given a bipartite tournament graph G : 〈X,A,Y〉 where X and Y are bipartite

sets of vertices and A is set of directed arcs between the bipartite and a number k ∈ N,

is there a feedback arc set of size at most k, that is, is there a subset A′ ⊆ A such that

|A′| ≤ k and G \ A′ is acyclic?

• Proof for MFASBT ≤P McMd. Now, we need to show that MFASBT is polynomial

time reducible to McMd.

1. Construction. First we need to show how we can transform any instance of

MFASBT into an instance of McMd. Let us assume 〈G : 〈X,A,Y〉 , k〉 to be an in-
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stance of MFASBT. We will transform it to an instance of McMd, 〈Ox,Oy,Mx:y, k〉,

where k remains unchanged.

Ontologies. We can generate ontologies Ox and Oy for the bipartite X and Y

respectively such that Ox contains |X| + 1 classes and Oy contains |Y| + 1 classes,

noting that each ontology contains a class more than the number of vertices. In

each ontology, the extra class is made the super class of all the other classes. These

are the only relationships in those ontologies.

Mapping. Now, for each edge xi −→ yj ∈ A and yj −→ xi ∈ A where xi ∈ X,

yj ∈ Y, we generate a mapping relationship cxi ≺ cyj ∈ Mx:y and cxi � cyj ∈ Mx:y

respectively and assign it a unit weight.

This completes our construction. Algorithm 2.2 shows this polynomial time com-

putable transformation.

Example 2.13. An instance of MFASBT as shown in Figure 2.4 (with some k)

will get transformed into following instance of McMd:

Ox : 〈{cx0, cx1, cx2} , {cx1 ≺ cx0, cx2 ≺ cx0}〉 , Oy :
〈{
cy0, c

y
1, c

y
2

}
,
{
cy1 ≺ c

y
0, c

y
2 ≺ c

y
0

}〉
,

Mx:y =
{
cx1 ≺ c

y
1, c

x
1 � c

y
2, c

x
2 ≺ c

y
2, c

x
2 ≺ c

y
1

}
,

ω
(
cx1 ≺ c

y
1

)
= ω

(
cx1 � c

y
2

)
= ω

(
cx2 ≺ c

y
2

)
= ω

(
cx2 ≺ c

y
1

)
= 1

Now, we must note the following properties of this transformation:

(a) Each simple cycle6 in G contains 4 or more even number of vertices and each

adjacent vertex is from different bipartite

(b) For any arbitrary simple cycle

xi −→ yj −→ xk −→ · · · −→ yl −→ xi

6A simple cycle is a cycle in which each vertex and each edge participates only once.
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Algorithm 2.2 Algorithm to transform any instance of MFASBT into an instance of McMd

Require: G : 〈X,A,Y〉, k
1: Ox : 〈Cx, Rx〉, Cx := {cx0}, Rx := ∅
2: Oy : 〈Cy, Ry〉, Cy :=

{
cy0
}

, Ry := ∅
3: Mx:y := ∅
4: k remains same in the transformed instance

5: for i = 1 to |X| do

6: Cx := Cx
⋃
{cxi}

7: Rx := Rx
⋃
{cxi ≺ cx0}

8: end for

9: for j = 1 to |Y| do

10: Cy := Cy
⋃{

cyj

}
11: Ry := Ry

⋃{
cyj ≺ c

y
0

}
12: end for

13: for all arc xi −→ yj ∈ A where xi ∈ X and yj ∈ Y do

14: Mx:y := Mx:y
⋃{

cxi ≺ c
y
j

}
15: ω

(
cxi ≺ c

y
j

)
:= 1

16: end for

17: for all arc yj −→ xi ∈ A where xi ∈ X and yj ∈ Y do

18: Mx:y := Mx:y
⋃{

cxi � c
y
j

}
19: ω

(
cxi � c

y
j

)
:= 1

20: end for

we will have following mapping relationships:

cxi ≺ c
y
j , c

x
k � c

y
j , c

x
k ≺ · · · , . . . , · · · ≺ c

y
l , c

x
i � c

y
l (2.2)

⇒cxi ≺ c
y
j ≺ c

x
k ≺ · · · ≺ c

y
l ≺ c

x
i (2.3)

⇒cxi ≺ cxi , c
y
j ≺ c

y
j , c

x
k ≺ cxk, . . . , c

y
l ≺ c

y
l (2.4)

Now, this closure contains the relationships cxi ≺ cxi , etc. hence, OMx:y is in-

consistent. Moreover,
{
cxi ≺ c

y
j , c

x
k � c

y
j , c

x
k ≺ · · · , . . . , · · · ≺ c

y
l , c

x
i � c

y
l

}
is a

set of conflicting relationships. Further, it can be noted that if this cycle was

absent, Equation (2.3) will also be absent in the closure, hence, there will be

no relationships cxi ≺ cxi . That is, any simple cycle in G implies inconsistency of

OMx:y .
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(c) Conversely, any inconsistency in OM′
x:y

implies a cycle in G. This is because any

set of conflicting relationships in OM′
x:y

can not involve the additional classes cx0

or cy0 as no other class is their super class. That is, they can not participate in a

sequence of relationships as in Equation (2.3). Therefore, there is a set of edges

in G corresponding to the conflicting relationships, which would be a cycle as

per our construction. Hence, any inconsistency in OM′
x:y

implies a cycle in G.

2. yes instance of MFASBT. Given a yes instance of MFASBT, A′ ⊆ A will lead to

a yes instance of McMd. This is because, G \ A′ does not contain any cycle, which

means the transformed instance of G \ A′, OM′
x:y

is consistent, as discussed above.

3. no instance of MFASBT. Given a no instance of MFASBT, A′ ⊆ A will lead to a

no instance of McMd. This is because, G \A′ contains some cycle, which means the

transformed instance of G \ A′, OM′
x:y

is inconsistent, as discussed above.

Theorem 2.3. McM is NP-hard where

McM: Given consistent Ox and Oy and some Mx:y, find a subset M′x:y ⊆Mx:y such that all the

following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ∀M′′x:y ⊆Mx:y : ωΣ

(
M′x:y

)
≥ ωΣ

(
M′′x:y

)
where M′′x:y is a maximal consistent mapping subset

Proof. The proof follows from Theorem 2.2.
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CHAPTER 3. METHODS AND PROCEDURES

In Section 2.6.3 we showed that McM is NP-hard and hence, it is not possible to have a

polynomial time computable function to find the optimal solution. Hence, in this chapter we

try to identify some algorithms that can compute near-good sub-optimal solution in polynomial

time. Before we do that, we will try to take a look at a possible brute force solution for the

problem.

3.1 Brute Force Approach

Let us recall that the problem that we are trying to solve is,

McM: Given consistent Ox and Oy and some Mx:y, find a subset M′x:y ⊆Mx:y such that all the

following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3. ∀M′′x:y ⊆ Mx:y : ωΣ

(
M′x:y

)
≥ ωΣ

(
M′′x:y

)
where M′′x:y is a maximal consistent mapping

subset

3.1.1 Approach

A brute force approach is to first try to add all the mappings and test if the combined

ontology is consistent or not. If the combined ontology is not consistent then remove one

mapping at a time and test if the combined ontology is consistent or not. This way we will

have |Mx:y| different subsets each of size |Mx:y| − 1 and among all the consistent mapping

subsets of that cardinality we pick the one that has highest combined weight. If none of the
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combined ontology is consistent, then remove two mappings at a time and test if the combined

ontology is consistent or not. This way we will have |Mx:y| (|Mx:y| − 1) /2 different subsets

each of size |Mx:y| − 2 and again, among all the consistent mapping subsets of that cardinality

we pick the one that has highest combined weight. We keep on doing this until a consistent

merged ontology is found. The subset of mappings with the highest weight in that iteration is

a maximum consistent mapping subset.

3.1.2 Algorithm

Algorithm 3.1 shows a simple implementation of the above approach.

Algorithm 3.1 Brute Force Approach to solve McM

Require: Ox, Oy, Mx:y

1: result := ∅
2: for n = |Mx:y| to 1 do

3: for all M′x:y ∈ ℘ (Mx:y) where
∣∣M′x:y∣∣ = n do

4: if consistent
(
OM′

x:y

)
= > and ωΣ

(
M′x:y

)
> ωΣ (result) then

5: result := M′x:y
6: end if

7: end for

8: if result 6= ∅ then

9: return result

10: end if

11: end for

12: return ∅

3.1.3 Correctness

Essentially in this approach, we are generating the power set ℘ (Mx:y) of the mapping set and

then we are using one subset M′x:y ∈ ℘ (Mx:y) at a time, in the decreasing order of cardinality.

Since we are checking all the possible subsets of a larger cardinality before checking any subset

of a smaller cardinality, hence, the subset that we get is a maximum subset.
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3.1.4 Complexity

We know that |℘ (Mx:y)| = 2|Mx:y|. Now, even if there is some very efficient way to generate

power sets, we still need to verify an exponential number of subsets. Moreover, for each check,

we need to generate the combined ontology and then verify its consistency. Hence, this is

clearly not a good solution for large value of |Mx:y|.

3.1.5 Discussion

This approach in effect will exhaust the complete search space. Hence, the obvious problem

with it is that it does not perform well when the number of mappings is large. Therefore,

we shift our focus to algorithms which may compute sub-optimal result, however, they are

computable much efficiently.

3.2 Approximate and Heuristic Approaches

Now, we will try to find a sub-optimal solution for our problem such that it is computable

in polynomial time. That is, now we will try to find a maximal consistent mapping subset.

The higher the weight of the computed subset the closer we will be to the optimal solution

and the better our algorithm. Let us specify the simplified problem below:

McMm : Given consistent Ox and Oy and some Mx:y, find a subset M′x:y ⊆ Mx:y such that all

the following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
There are few simple and straight-forward approaches to compute a maximal consistent

mapping subset that we discuss later in Section 3.4 and Section 3.5. However, before doing

that we will show how we can compute the function consistent.
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3.3 Mapping Graph

Earlier, in proof of Theorem 2.2, we used a graph problem to prove that our problem is

also NP-hard. Hence, while trying to solve the problem, we also looked at the heuristics that

may be used to solve the similar graph problems. Demetrescu and Finocchi have identified a

combinatorial algorithm for finding feedback arc set in a weighted directed graph [Demetrescu

and Finocchi, 2003]. Given a weighted directed graph their algorithm can compute a minimal

weight feedback arc set, such that the approximation ratio is bounded by the length of the

longest simple cycle. In order to use their algorithm we need to identify a way to convert our

problem into a feedback arc set in weighted directed graph problem. We do so, by introducing

a mapping graph – a graph that we will use to represent the problem such that we can clearly

distinguish between the ontology relationships and mapping relationships.

Given any two ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉 and a mapping set Mx:y, the

corresponding mapping graph is GMx:y where,

VMx:y is a finite non-empty set of vertices such that

VMx:y = VOx

⋃
VOy

EMx:y is a finite set of labeled directed edges. Each edge is either of the following:

99K is an ontology edge corresponding to some subclass relationship specified in either

ontology

−→ is a mapping edge corresponding to some subclass or super class relationship spec-

ified in the mapping set

←→ is a mapping edge corresponding to some equivalence relationship specified in the

mapping set

Moreover,

EMx:y = EOx

⋃
EOy

⋃
E
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E is a finite set of mapping edges corresponding to the mapping relationships specified in

the mapping set such that each edge contains a vertex from either ontology, that is,

E =
{
ex:y1 , ex:y2 , . . .

}
ex:yp is a directed edge representing mapping relationship, such that,

(
cxi ≺ c

y
j ∈Mx:y

)
⇔ ∃ex:yp ∈ E :

(
ex:yp = vxi −→ vyj

)
(
cxi � c

y
j ∈Mx:y

)
⇔ ∃ex:yp ∈ E :

(
ex:yp = vyj −→ vxi

)
(
cxi ≡ c

y
j ∈Mx:y

)
⇔ ∃ex:yp ∈ E :

(
ex:yp = vxi ←→ vyj

)

Property 3.1. GMx:y contains at most
(
|Cx|+ |Cy|

)
vertices and at most

(
|Rx|+ |Ry|+ |Mx:y|

)
edges, that is,

(
|VOx |+

∣∣VOy

∣∣) =
∣∣VMx:y

∣∣ ≤ (|Cx|+ |Cy|
)

= |C|(
|EOx |+

∣∣EOy

∣∣+ |E|
)

=
∣∣EMx:y

∣∣ ≤ (|Rx|+ |Ry|+ |Mx:y|
)

=
(
|R|+ |M|

)
where |C| = |Cx|+ |Cy|, |R| = |Rx|+ |Ry|, and |M| = |Mx:y| as noted earlier in Section 2.5 and

Property 2.1.

Example 3.1. For example, again consider the ontologies

O4 :
〈
{a, b, c} , {c ≺ b, b ≺ a}

〉
and O5 :

〈
{x, y, z} , {z ≺ y, y ≺ x}

〉
and a mapping set M4:5 = {a � x, b � y, c ≡ z}. Its corresponding mapping graph GM4:5 is

shown in Figure 3.1(c).

Note. We want to emphasize that we are using two different types of edges to distinguish the

relationships that are specified in the ontologies and the relationships that are specified in the

mapping set. Table 3.1 lists down how each relationship is being represented in the mapping

graph.
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(a) GO4 (b) GO5 (c) GM4:5

Figure 3.1: Example of Mapping Graph

Table 3.1: How are relationships represented in the mapping graph?

Relationship In Mapping Graph Edge Type

cxi ≺ cxj vxi 99K vxj Ontology edge

cxi ≺ c
y
j vxi −→ vyj Mapping edge

cxi � c
y
j vyj −→ vxi Mapping edge

cxi ≡ c
y
j vxi ←→ vyj Mapping edge

3.3.1 Construction

Algorithm 3.2 shows an algorithm to construct mapping graph GMx:y :
〈
VMx:y , EMx:y

〉
for

given ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉 and mapping set Mx:y. In the algorithm we

first construct the ontology graphs for both the ontologies and then merge them by adding

edges between the two graphs on the basis of the mapping relationships.

3.3.1.1 Complexity

In this construction, first we create two ontology graphs, for which the total running time

is O (|C|+ |R|). Further, we iterate each mapping relation once. Hence, the total running time

of the construction is O (|C|+ |R|+ |M|).

3.3.1.2 Converting Mapping Graph to Ontology Graph

Each mapping graph GMx:y for any given ontologies Ox and Oy and mapping set Mx:y can

be converted to an ontology graph GOMx:y
for the combined ontology OMx:y . The conversion is
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Algorithm 3.2 Constructing mapping graph GMx:y :
〈
VMx:y , EMx:y

〉
for given ontologies

Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉 and mapping set Mx:y

Require: Ox : 〈Cx, Rx〉, Oy : 〈Cy, Ry〉, Mx:y

1: Generate GOx : 〈VOx , EOx〉, GOy :
〈
VOy , EOy

〉
2: GMx:y :

〈
VMx:y , EMx:y

〉
, VMx:y

:= VOx

⋃
VOy , EMx:y

:= EOx

⋃
EOy

3: for all cxi ≺ c
y
j ∈Mx:y do

4: EMx:y
:= EMx:y

⋃{
vxi −→ vyj

}
5: end for

6: for all cxi � c
y
j ∈Mx:y do

7: EMx:y
:= EMx:y

⋃{
vyj −→ vxi

}
8: end for

9: for all cxi ≡ c
y
j ∈Mx:y do

10: EMx:y
:= EMx:y

⋃{
vxi ←→ vyj

}
11: end for

quite simple. Firstly, we copy all the non-mapping edges and unidirectional mapping edges

to the ontology graph. Then, we merge the vertices that are combined by the bidirectional

edges. Algorithm 3.3 shows a simple algorithm to perform the same. The running time of the

algorithm is O
(
|C|+

(
|R|+ |M|

)2)
.

Theorem 3.1. A merged ontology OMx:y is consistent if its mapping graph GMx:y is a DAG.

Proof. This is obvious since the mapping graph GMx:y can be converted to ontology graph

GOMx:y
which in turn must be a DAG for the combined ontology OMx:y to be consistent as per

Theorem 2.1.

3.3.2 Condition for Cycle

Representing the problem as a mapping graph, helps us understand a very important

requirement for the inconsistency, described below.

Theorem 3.2. Given any two consistent ontologies Ox and Oy and a mapping set Mx:y,

any cycle in the mapping graph GMx:y must contain at least two edges corresponding to the

mapping relationships, that is, at least two edges in any cycle must belong to the set
(
EMx:y \(

EOx

⋃
EOy

))
. Moreover, those edges must be either of the following:
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Algorithm 3.3 Converting Mapping graph GMx:y to Ontology graph GOMx:y

Require: GMx:y :
〈
VMx:y , EMx:y

〉
1: GOMx:y

:
〈
VOMx:y

, EOMx:y

〉
, VOMx:y

:= VMx:y , EOMx:y
:= ∅

2: for all u 99K v ∈ EMx:y do

3: EOMx:y
:= EOMx:y

⋃
{u 99K v}

4: end for

5: for all u −→ v ∈ EMx:y do

6: EOMx:y
:= EOMx:y

⋃
{u −→ v}

7: end for

8: for all u←→ v ∈ EMx:y do // Merge the vertices u and v into a single vertex //

9: w := u
⋃
v

10: for all e ∈ EMx:y do

11: Replace u or v or both with w

12: end for

13: VOMx:y
:=
(
VOMx:y

⋃
{w}

)
\ {u, v}

14: end for

• vxi −→ vyj and vyl −→ vxk

• vxi −→ vyj and vxk ←→ vyl

• vxi ←→ vyj and vyl −→ vxk

• vxi ←→ vyj and vxk ←→ vyl

Proof. The proof is simple. Since the given ontologies are consistent, they must be both DAGs

by Theorem 2.1. Moreover, for the vertices in two DAGs to participate in a cycle, there must

be a path that goes from each DAG to the other DAG, that is an edge from each DAG to

the other DAG. The edges from one one DAG to other DAG are the ones coming due to the

mapping set. Hence, at least two of the edges in any cycle must be the mapping edges as

specified above.

Remark. Now, we can observe that each cycle can in turn be represented as a chain of

relationships which will lead to inconsistency in the ontology. Hence, any such chain would

contain at least two mapping relationships which must be either of the following:

• cxi ≺ c
y
j and cxk � c

y
l
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• cxi ≺ c
y
j and cxk ≡ c

y
l

• cxi ≡ c
y
j and cxk � c

y
l

• cxi ≡ c
y
j and cxk ≡ c

y
l

3.4 Simple Näıve Approach

Now, we will discuss a very simple and straight-forward approach to compute a maximal

consistent mapping subset. Recall that our problem is:

McMm : Given consistent Ox and Oy and some Mx:y, find a subset M′x:y ⊆ Mx:y such that all

the following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
3.4.1 Approach

A very simple approach to identify a maximal subset would be to start with an empty

subset M′x:y. Now, we add one mapping at a time to this set, in decreasing order of their

weights, as long as, the combined ontology OM′
x:y

remains consistent. Once all mappings have

been tried out, the subset at that time would be a maximal consistent mapping subset.

3.4.2 Algorithm

Algorithm 3.4 shows a simple implementation of the above approach.

3.4.3 Complexity

In this approach we add each mapping once and try to verify the consistency of the ontology.

In order to check the consistency, we need to create the ontology graph for the combined

ontology. We can optimize the process by creating an ontology graph for empty mapping set,

and then forth, for each mapping, we just need to add one edge. Therefore, for each mapping,

we need to check consistency. Hence, we have a running time of O
(
|M| (|C|+ |R|+ |M|)

)
.
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Algorithm 3.4 Simple Näıve Approach to solve McMm

Require: Ox, Oy, Mx:y

1: M′x:y := ∅
2: for all mapping rx:yp ∈Mx:y in decreasing order of weight where p ∈ |Mx:y| do

3: M′x:y = M′x:y
⋃{

rx:yp

}
4: if consistent

(
OM′

x:y

)
= ⊥ then

5: M′x:y = M′x:y \
{
rx:yp

}
6: end if

7: end for

8: return M′x:y

3.4.4 Correctness

Since we are looking at each mapping in the given order and a mapping is not added only

when it causes inconsistency with the already added mappings. Hence, each mapping that

was not added to the subset, is causing inconsistency with the other mappings already added

in the subset, that is, no more mapping can be added to the subset. Therefore, the subset is

maximal.

3.4.5 Approximation

This algorithm does not guarantee anything about the approximation it provides. The

reason for this is simple. One mapping relationship with highest weight will be always added.

Now, it is possible that this relationship is conflicting with all other relationships in the given

mapping set. It is also possible that if this relationship were not added, then there was no

inconsistency at all. Hence, the approximation simply depends on the order in which the

mapping relationships are iterated.

3.5 Biased Approach

Our this approach builds up on the observation made in Section 3.3.2. We observed that

there must be at least two mapping edges in each cycle and at least one mapping edge from

each ontology graph to other ontology graph. That is, in terms of mapping relations, the two



www.manaraa.com

37

relations that may cause inconsistency must be ≺ and � if none of the relation is ≡. If all the

relations are only ≺ or � then there is no inconsistency. This observation gave us the idea for

this approach.

3.5.1 Approach

The approach is simple. We first find out total weights of all the ≺ and � mappings in

the mapping set, say, ωΣ (sub) and ωΣ (sup) respectively. Now, whichever weight is higher, we

add all those relationships to our mapping subset M′x:y. At this state, the mapping set M′x:y

does not cause any inconsistency in the combined ontology OM′
x:y

, as discussed above. Now, we

try to maximize M′x:y, by adding one mapping out of all the remaining mappings, at a time to

this M′x:y as long as, the combined ontology OM′
x:y

remains consistent. Once all the remaining

mappings have been tried out, the subset M′x:y at that time would be a maximal set.

3.5.2 Algorithm

Algorithm 3.5 shows a simple implementation of the above approach.

Algorithm 3.5 Biased Approach to solve McMm

Require: Ox, Oy, Mx:y

1: Count ωΣ (sub) := the sum of weights of all cxi ≺ c
y
j ∈Mx:y

2: Count ωΣ (sup) := the sum of weights of all cxi � c
y
j ∈Mx:y

3: if ωΣ (sub) > ωΣ (sup) then

4: M′x:y := subset of Mx:y such that each mapping is of the form cxi ≺ c
y
j

5: else

6: M′x:y := subset of Mx:y such that each mapping is of the form cxi � c
y
j

7: end if

8: Mx:y := Mx:y \M′x:y
9: for all mapping rx:yp ∈Mx:y in decreasing order of weight where p ∈ |Mx:y| do

10: M′x:y = M′x:y
⋃{

rx:yp

}
11: if consistent

(
OM′

x:y

)
= ⊥ then

12: M′x:y = M′x:y \
{
rx:yp

}
13: end if

14: end for
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3.5.3 Complexity

The only modification to this algorithm over Algorithm 3.4 is that before iterating over the

mapping set, we compute the total weight of all subclass and super class relationships. This

can be done with an additional running time of O (|M|) where |M| is the number of mappings.

However, the overall complexity of the algorithm still remains same. Therefore, we have a

running time of O
(
|M| (|C|+ |R|+ |M|)

)
.

3.5.4 Correctness

At first we are adding only one kind of mappings, either ≺ or �. Now, these mapping alone

do not cause any inconsistency. Then at each step when we try to add any of the remaining

mapping, we add it only if it does not cause any inconsistency with the already added mappings.

Hence, each mapping that was not added to the subset, is causing inconsistency with the other

mappings already added in the subset, that is, no more mapping can be added to the subset.

Therefore, the subset is maximal.

3.5.5 Approximation

The algorithm guarantees that the solution would contain at least half of the total weight

of all non-equivalence mapping relationships. However, it does not guarantee anything about

how many mappings out of the total mappings would be there in the solution. Further more,

if the mapping set contains only the ≡ relations, then there is again no guarantee of how

many mappings would be present in the solution. Therefore, as discussed in Section 3.4.5, this

algorithm also does not guarantee anything about the approximation achieved.

3.6 Graph-based Approach

As mentioned earlier in Section 3.3, Demetrescu and Finocchi identified a combinatorial

algorithm for finding feedback arc set in a weighted directed graph [Demetrescu and Finocchi,

2003]. Given a weighted directed graph their algorithm can compute a minimal weight feedback

arc set, such that the approximation ratio is bounded by the length of the longest simple cycle.
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In order to use their algorithm we needed to identify a way to convert our problem into a

feedback arc set in weighted directed graph problem. We can construct the mapping graph

as per Section 3.3.1. Now, we need to convert the mapping graph to a standard weighted

directed graph and in order to do that we must first identify a way to assign weights to the

edges. We discuss various ways in which we can assign weights to edges in Section 3.6.4. Once

we have computed the weights, we can replace different labeled edges with simple directed

edges and use the the algorithm by Demetrescu and Finocchi to find out the minimal weight

feedback arc set, as discussed in Section 3.6.5. Mapping relationships corresponding to all the

mapping edges that are not in this feedback set form the maximal subset of relationships that

can be added to combine the given ontologies without causing inconsistency, as discussed in

Section 3.6.6.

3.6.1 Approach

Recall that the problem that we are trying to solve is: McMm : Given consistent Ox and

Oy and some Mx:y, find a subset M′x:y ⊆Mx:y such that all the following are true:

1. consistent
(
OM′

x:y

)
= >

2. ∀rx:yp ∈Mx:y \M′x:y :
(

consistent
(
OM′′

x:y

)
= ⊥

)
where M′′x:y =

(
M′x:y

⋃{
rx:yp

})
We have multiple steps in this solution and in the sections below we will discuss each step

individually. Here is the informal sketch of the solution:

1. Input. Input consistent ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉 and weighted map-

ping set Mx:y.

2. Mapping graph. Compute mapping graph GMx:y :
〈
VMx:y , EMx:y

〉
using GOx and GOy as

per Algorithm 3.2 as discussed in Section 3.3.1.

3. Mapping subgraph. Compute a mapping subgraph G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
of GMx:y by

removing all those vertices that can not appear in any cycles using Algorithm 3.6 as

discussed in Section 3.6.3.
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4. Edge weighted directed graph. Transform G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
into a weighted

directed graph GW : 〈VW , EW〉 by computing weight for each edge of G′Mx:y
using Algo-

rithm 3.7 as discussed in Section 3.6.4.

5. Minimal weight feedback arc set. Compute the minimal weight feedback arc set

FAS ⊆ EW for GW using Algorithm 3.8 as discussed in Section 3.6.5. We will use the

algorithm given by Demetrescu and Finocchi [2003].

6. Maximal consistent mapping subset. Compute the maximal consistent mapping

subsetM′x:y ⊆Mx:y with the help of FAS using Algorithm 3.9 as discussed in Section 3.6.6.

7. Output. M′x:y is our solution

Example 3.2. Throughout this section we will follow a common example and perform each

step as we proceed. Let us consider the following consistent ontologies

O6 :
〈
{a, b, c, d, e} , {a ≺ b, a ≺ c, b ≺ d, b ≺ e, c ≺ d}

〉
and O7 :

〈
{x, y, z} , {x ≺ y, x ≺ z}

〉
and a corresponding weighted mapping set M4:5 = {c � y, d ≺ x, d � z}. For simplicity we

assume that all the weights are unit weight.

Figure 3.2(a) and Figure 3.2(b) show the corresponding ontology graphs GO6 and GO7

respectively and Figure 3.2(c) shows the mapping graph GM6:7 .

3.6.2 Useful functions

Before we start to discuss the remaining steps for the above approach, in the section, we

will describe few functions that will help us to describe our approach more efficiently.

3.6.2.1 Function mapOut

At first, we define a function mapOut that, given a vertex, counts the total number of ways

to reach the vertices in the other ontology, that is, count of the outgoing mapping edges. For

any mapping graph GMx:y , we define function mapOut: VMx:y −→ N
⋃
{0} as follows:

mapOut (vzi ) = total number of all edges like vzi −→ vz
′

j or vzi ←→ vz
′

j where z 6= z′ ∈ {x, y}
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(a) GO6 (b) GO7 (c) GM6:7

Figure 3.2: Example ontology graphs and corresponding mapping graph for Graph-based

Approach

It is easy to note that this function will have a runtime complexity of O (|M|) where |M| is the

number of mapping relationships.

Example 3.3. For example, consider Figure 3.2(c). Here mapOut ({d}) = 1 since from {b}

there is only one outgoing mapping edge to {x}.

Moreover, mapOut ({x}) = 0 since from {x} there is no outgoing mapping edge. Please

note that, mapOut does not count the ontology edges outgoing to {y} and {z}.

3.6.2.2 Function mapIn

Similar to the function mapOut, we define another function mapIn that, given a vertex,

counts the number of all incoming mapping edges. For any mapping graph GMx:y , we define

function mapIn: VMx:y −→ N
⋃
{0} as follows:

mapIn (vzi ) = total number of all edges like vz
′

j −→ vzi or vzi ←→ vz
′

j where z 6= z′ ∈ {x, y}

It is easy to note that this function will also have a runtime complexity of O (|M|) where |M|

is the number of mapping relationships.

Example 3.4. For example, consider Figure 3.2(c). Here mapIn ({x}) = 1 since {x} has

only one incoming mapping edge from {d}.
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Moreover, mapIn ({c}) = 1 too since {c} has only one incoming mapping edge from {y}.

Please note that, mapIn does not count the ontology edge incoming from {a}.

3.6.2.3 Function ontReach

Now, we define a reachability function. Given two vertices, belonging to the same ontology

graph, this function computes if it is possible to reach one vertex from the other or not? If the

two vertices are same or both are from different ontology graphs, then this function returns

false. This function will be useful in defining the next two useful functions. For any mapping

graph GMx:y , we define function ontReach: VMx:y × VMx:y −→ {>,⊥} as follows:

ontReach
(
vzi , v

z
j

)
=


> if vzi 6= vzj and ∃vz1, vz2, . . . , vzn ∈ VMx:y :(

vzi 99K v
z
1 ∈ EMx:y

)
∧
(
vz1 99K vz2 ∈ EMx:y

)
∧ · · · ∧

(
vzn 99K vzj ∈ EMx:y

)
⊥ otherwise

where z ∈ {x, y}.

Informally, ontReach
(
vzi , v

z
j

)
= >, if it is possible to reach to vzj starting from vzi fol-

lowing only the non-mapping edges. We would also like to note that this function can be

computed easily using a modified version of standard depth-first search where we ignore all

the non-mapping edges. It turns out that we can compute it with a runtime complexity of

O (|C|+ |R|+ |M|).

Example 3.5. For example, consider Figure 3.2(c). Here ontReach ({a} , {e}) = > since it

is possible to reach {e} from {a} following only the non-mapping edges.

Moreover, ontReach ({b} , {c}) = ⊥ since it is not possible to reach {c} from {b} following

only the non-mapping edges. Please note that, ontReach ignores the path through the mapping

edge d −→ x and y −→ c.

Note. We will like to note that this function results into false if both the input vertices are

same or both of them actually belonged to different ontology graphs, that is, ontReach (vxi , v
x
i ),

ontReach
(
vyi , v

y
i

)
, ontReach

(
vyj , v

x
i

)
, and ontReach

(
vxj , v

y
i

)
all result into ⊥.
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3.6.2.4 Function ontAnc

Now, we will define a function to find out all the ancestors of a given vertex. This function

is different from the standard functions that detect ancestors in a way like ontReach, this

function also ignores paths through mapping edges. Given a vertex, this function computes

a set of all those vertices belonging to the same ontology graph, that are reachable from this

vertex through non-mapping edges (ancestors within same ontology). For any mapping graph

GMx:y , we define function ontAnc: VMx:y −→ ℘
(
VMx:y

)
where ℘

(
VMx:y

)
is the power set of VMx:y ,

as follows:

ontAnc (vzi ) = V such that ∀vzj ∈ V : ontReach
(
vzi , v

z
j

)
= > and ∀vzk ∈ V : ontReach (vzi , v

z
k) = ⊥

where z ∈ {x, y} and V = VMx:y \ V

We note that ontAnc (vzi ) gives the set of all those vertices that are reachable from vzi

through non-mapping edges. We refer these vertices as ancestors of vzi . We would also like to

note that if we compute this function the way we have defined it, then we can do this with a

runtime complexity of O
(
|C|
(
|C|+ |R|+ |M|

))
. However, rather than computing it like this,

we can do this simply by modifying the standard depth-first search algorithm and thereby

attain a runtime complexity of O (|C|+ |R|+ |M|).

Example 3.6. Consider Figure 3.2(c). Here ontAnc ({a}) = {{b} , {c} , {d} , {e}} since it is

possible to reach all {b}, {c}, {d} and {e} from {a} following only the non-mapping edges.

We note ontAnc does not include {x} in this set since it is not possible to reach {x} from {a}

following only the non-mapping edges.

3.6.2.5 Function ontDesc

Similar to ontAnc, we define another function ontDesc that, given a vertex, computes a set

of all those vertices belonging to the same ontology graph, from where this vertex is reachable

through non-mapping edges (descendants within same ontology). For any mapping graph GMx:y ,

we define function ontDesc : VMx:y −→ ℘
(
VMx:y

)
where ℘

(
VMx:y

)
is the power set of VMx:y , as
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follows:

ontDesc (vzi ) = V such that ∀vzj ∈ V : ontReach
(
vzj , v

z
i

)
= >

and ∀vzk ∈ V : ontReach (vzk, v
z
i ) = ⊥ where z ∈ {x, y} and V = VMx:y \ V

Moreover, like ontAnc, ontAnc will also have a runtime complexity of O (|C|+ |R|+ |M|).

Example 3.7. For example, consider Figure 3.2(c). Here ontDesc ({d}) = {{a} , {b} , {c}}

since it is possible to reach both {d} from all {a}, {b} and {c} following only the non-mapping

edges. We note ontAnc does not include {z} in this set since it is not possible to reach {d}

from {z} following only the non-mapping edges.

3.6.3 How to compute Subgraph?

Now, we can describe our approach further. The next step after computing the mapping

graph, is to compute the subgraph. Since the performance of graph problems is usually de-

pendent on the vertices and edges in the graph, we think that if we can efficiently remove the

vertices that are guaranteed not to participate in any cycle, then the runtime performance of

our algorithm will be much better (even though it may not improve the worst case runtime

complexity). We want to note here that this step is optional, and our solution will work even

if we skip this step.

In this step, given a mapping graph GMx:y :
〈
VMx:y , EMx:y

〉
, we try to find out all those

vertices vzi ∈ VMx:y where z ∈ {x, y} that cannot participate in any cycle at all and remove

them from the graph. It is obvious that if a vertex has no incoming or no outgoing edge, then

it cannot participate in a cycle. For a vertex to participate in any cycle, it must have both

incoming and outgoing edges. However, in our case, we can prove a stronger condition. We do

that in the following theorem.

Theorem 3.3 (Condition for a vertex to possibly participate in some cycle). Given a mapping

graph GMx:y :
〈
VMx:y , EMx:y

〉
, a vertex vzi ∈ VMx:y where z ∈ {x, y} may participate in a cycle

only if at least one of the following conditions is true:

1. (mapOut (vzi ) > 0) ∧ (mapIn (vzi ) > 0)
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2. (mapIn (vzi ) > 0) ∧
(
∃vzj ∈ ontAnc (vzi ) : mapOut

(
vzj

)
> 0
)

3. (mapOut (vzi ) > 0) ∧ (∃vzk ∈ ontDesc (vzi ) : mapIn (vzk) > 0)

4.
(
∃vzj ∈ ontAnc (vzi ) : mapOut

(
vzj

)
> 0
)
∧ (∃vzk ∈ ontDesc (vzi ) : mapIn (vzk) > 0)

Alternatively, a vertex vzi ∈ VMx:y may participate in a cycle only if

(
mapIn (vzi ) > 0 ∨

(
∃vzk ∈ ontDesc (vzi ) : mapIn (vzk) > 0

))
∧
(

mapOut (vzi ) > 0 ∨
(
∃vzj ∈ ontAnc (vzi ) : mapOut

(
vzj
)
> 0
))

(3.1)

In simple words, a vertex in a mapping graph can participate in a cycle only if either it or

one of its descendant has an incoming mapping edge and either it or one of its ancestors has

an outgoing mapping edge.

Proof. Without loss of generality, let us assume by contradiction that there exists some vertex

vxi that participates in a cycle even though Equation (3.1) is false, that is,

¬
((

mapIn (vzi ) > 0 ∨
(
∃vzk ∈ ontDesc (vzi ) : mapIn (vzk) > 0

))
∧
(

mapOut (vzi ) > 0 ∨
(
∃vzj ∈ ontAnc (vzi ) : mapOut

(
vzj
)
> 0
)))

= ¬
(

mapIn (vxi ) > 0 ∨
(
∃vxk ∈ ontDesc (vxi ) : mapIn (vxk) > 0

))
∨ ¬
(

mapOut (vxi ) > 0 ∨
(
∃vxj ∈ ontAnc (vxi ) : mapOut

(
vxj
)
> 0
))

=
(

mapIn (vxi ) ≯ 0 ∧
(
@vxk ∈ ontDesc (vxi ) : mapIn (vxk) > 0

))
∨
(

mapOut (vxi ) ≯ 0 ∧
(
@vxj ∈ ontAnc (vxi ) : mapOut

(
vxj
)
> 0
))

Hence, we have following two conditions:

mapIn (vxi ) ≯ 0 ∧
(
@vxk ∈ ontDesc (vxi ) : mapIn (vxk) > 0

)
(3.2)

mapOut (vxi ) ≯ 0 ∧
(
@vxj ∈ ontAnc (vxi ) : mapOut

(
vxj
)
> 0
)

(3.3)

Now, at least one out of Equation (3.2) or Equation (3.3) must be true for vxi to participate

in a cycle. However, if Equation (3.2) is true, then it means that neither vxi nor any of its
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descendants has an incoming mapping edge. This means that vxi is not reachable via the

mapping edges. As per Theorem 3.2 each cycle must contain mapping edges. Therefore, this

is contradiction and hence Equation (3.2) must be false. Alternatively, if Equation (3.3) is

true, then it means that neither vxi nor any of its ancestors have outgoing mapping edge. This

means that none of the vertices reachable from vxi can be reached via the mapping edges.

Again, we have a contradiction and hence Equation (3.3) must be false too. Since, none of

the conditions are true, our assumption is not valid and therefore, Equation (3.1) must hold

for vxi to participate in a cycle.

Remark. We would like to note here that Theorem 3.3 does not guarantee that if any of the

conditions is true for some vertex then that vertex will surely participate in some cycle. It

only guarantees that a vertex will not participate in a cycle if none of the conditions are true.

We can use this theorem to define the next function.

3.6.3.1 Function mayInCycle

For any mapping graph GMx:y , we define a function mayInCycle : VMx:y −→ {>,⊥} as follows:

mayInCycle (vzi ) =


> if

(
mapIn (vzi ) > 0 ∨

(
∃vzk ∈ ontDesc (vzi ) : mapIn (vzk) > 0

))
∧
(

mapOut (vzi ) > 0 ∨
(
∃vzj ∈ ontAnc (vzi ) : mapOut

(
vzj

)
> 0
))

⊥ otherwise

The number of ancestors or descendants for a vertex can be at most |C|. Hence, this function

can be computed with a runtime complexity of O
(
|C|
(
|C|+ |R|+ |M|

))
.

3.6.3.2 Algorithm

Now, we can use the function mayInCycle to write an algorithm for this step. Algorithm 3.6

shows how to compute a subgraph G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
of GMx:y :

〈
VMx:y , EMx:y

〉
.

Since at most we have |C| number of vertices, this algorithm will therefore have a runtime

complexity of O
(
|C|2

(
|C|+ |R|+ |M|

))
.

Example 3.8. For example, consider the mapping graph GM5:6 shown in Figure 3.2(c). Its

corresponding subgraph G′M5:6
is shown in Figure 3.3.
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Algorithm 3.6 Computing subgraph G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
of GMx:y :

〈
VMx:y , EMx:y

〉
Require: GMx:y :

〈
VMx:y , EMx:y

〉
1: G′Mx:y

:
〈
V′Mx:y

, E′Mx:y

〉
, V′Mx:y

:= VMx:y , E′Mx:y
:= EMx:y

2: for all vxi ∈ VMx:y do

3: if mayInCycle (vxi ) = ⊥ then

4: V′Mx:y
:= V′Mx:y

\ {vxi } // also remove corresponding edges //

5: end if

6: end for

7: return G′Mx:y

Figure 3.3: Example for mapping subgraph

3.6.4 How to compute Weights for Edges?

As discussed earlier in Section 3.6, in order to use the algorithm by Demetrescu and Finoc-

chi, we must first compute weights for the edges in our mapping graph and then convert it to a

standard edge weighted directed graph. The latter step is simple as we only need to remove the

labels from the edges and we can perform this at the same time while computing the weights

as shown later in Algorithm 3.7. Hence, here we will first discuss the various ways in which

we can assign weights to the edges. Let us say that, for some edge weighted directed graph

GW : 〈VW , EW〉, we are interested in initializing the function

weight : EW −→ N
⋃
{∞}

.

First, we note that this Demetrescu and Finocchi’s algorithm works by removing edges with

the minimum weight. We also know that, under no circumstance, shall we be removing the



www.manaraa.com

48

non-mapping relationships, that is, we do not want to remove the non-mapping edges. Hence,

it is clear that the non-mapping edges must be all assigned infinite weight. Now, below we

will discuss only about how we can assign weights to the mapping edges.

One very simple and straight forward approach is that we can assign constant weight to

all those edges. This way all the edges that are causing cycles will get removed with equal

preference.

Another simple approach is to use the user specified mapping weights. If we have ω for

all the mappings then we may also choose the assign the same weights to each mapping edge.

This way the edges causing cycles will be removed as per the user preference.

However, we know that some edges may be causing more cycles than some other edges and if

we first remove the edges that are participating in more cycles then we may get a larger solution

set. That is, we try to assign weights to the mapping edges such that an edge that appears in

more number of cycles, gets removed before an edge that appears in less number of cycles. To

achieve this, we first identify the number of cycles that each mapping edge can participate in,

that is, we are interested in implementing some function numCycle : EMx:y \
(
EOx

⋃
EOy

)
−→ N

such that,

numCycle
(
ex:yp

)
= Number of cycles in which edge ex:yp participates

Once, we have this information, we can assign the lowest weight to the edges which participate

in most number of cycles and maximum weight to the edges which participate in least number

of cycles.

One approach to implement this is by identifying all the elementary cycles in the graph

and based on that compute the number of cycles in which each mapping edge participates.

However, it is not possible to compute it efficiently. One of the efficient algorithms that can

be used is time bounded by O
((
|V|+ |E|

)(
c+ 1

))
and space bounded by (|V|+ |E|) where c is

the number of elementary cycles in the graph [Johnson, 1975]. Since the number of elementary

cycles can be really huge, we cannot compute this in polynomial time. Therefore, rather than

calculating the exact number of cycles, we try to estimate it as shown below.
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3.6.4.1 Heuristically Estimating the Number of Cycles for an Edge

Earlier in Theorem 3.2 we proved that each cycle in a mapping graph must contain at least

two mapping edges so that there is both a way to enter and exit each ontology graph once.

Therefore, we can estimate the number of cycles a mapping edge can participate in by finding

out the number of ways it is possible to enter the edge from the one ontology graph and the

number of ways it is possible to leave into the other ontology graph. That is,

numCycle (u −→ v) =
(

Number of ways to enter u from other ontology
)

×
(

Number of ways to leave v into other ontology
)

numCycle (u←→ v) = numCycle (u −→ v) + numCycle (v −→ u)

Therefore, for each mapping edge we can estimate the maximum number of possible cycles

that it can participate in using the following calculations:

numCycle
(
vzi −→ vz

′
j

)
=

(
mapIn (vzi ) +

∑
vzk∈ontDesc(vzi)

ontDescPath (vzk, v
z
i ) mapIn (vzk)

)

×

(
mapOut

(
vz

′
j

)
+

∑
vz

′
k ∈ontAnc(vz′j )

ontAncPath
(
vz

′
j , v

z′
k

)
mapOut

(
vz

′
k

))

numCycle
(
vzi ←→ vz

′
j

)
= numCycle

(
vzi −→ vz

′
j

)
+ numCycle

(
vz

′
j −→ vzi

)
where z 6= z′ ∈ {x, y} and for any mapping graph GMx:y :

〈
VMx:y , EMx:y

〉
we define the functions

ontAncPath: VMx:y×VMx:y −→ N
⋃
{0} and ontDescPath: VMx:y×VMx:y −→ N

⋃
{0} as follows:

ontAncPath (vzd, v
z
a) =

 0 if vza /∈ ontAnc (vzd)

|ontAnc (vzd)| otherwise — overestimation

ontDescPath (vzd, v
z
a) =

 0 if vzd /∈ ontDesc (vza)

|ontDesc (vza)| otherwise — overestimation

In all other cases numCycle results into 0.

Ideally, with ontAncPath (vzd, v
z
a) we are interested in computing all the paths from vertex

vzd to its ancestor vza and with ontDescPath (vzd, v
z
a) we are interested in computing all the paths
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to vertex vza from its descendant vzd. However, since we cannot compute that efficiently, we

simply overestimate it to the actual number of ancestors and descendants respectively since

the number of path cannot be greater than that number.

Moreover, we can observe that since maximum value for ancestors and descendants is less

than |C|, this function can be computed with a runtime complexity of O
(
|C|
(
|C|+ |R|+ |M|

))
.

3.6.4.2 Algorithm

We can therefore assign the weight to each edge define the weights for each edge as a function

of both the user specified weight and the number of cycles in which that edge may participate

such that the edge with higher weight and that may participate in fewer cycles gets precedence

over an edge with less weight and that may participate in more cycles. We use a possible

approach in the next algorithm. Algorithm 3.7 shows an algorithm to convert the mapping

subgraph G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
into normal weighted directed graph GW : 〈VW , EW〉. In the

algorithm we assign∞ weight to each non-mapping edge. Then for each mapping edge ex:yp , we

compute the value of numCycle
(
ex:yp

)
and then assume max to be some number greater than

the maximum value of all numCycle
(
ex:yp

)
. Then each mapping edge ex:yp is assigned a weight

of max− numCycle
(
ex:yp

)
+ ω

(
ex:yp

)
.

Since we are computing numCycle for each mapping edge, therefore, this algorithm has a

runtime complexity of O
(
|C| |M|

(
|C|+ |R|+ |M|

))
.

Example 3.9. For example, consider the mapping subgraph G′M5:6
shown in Figure 3.3. We

convert it to an edge weighted directed graph GW : 〈VW , EW〉 as shown in Figure 3.4. Here

to compute the weights we assumed max = 3.

3.6.5 How to compute Minimum Weight Feedback Arc Set?

As discussed earlier, Demetrescu and Finocchi gave an approximation algorithm for finding

feedback arc set in a weighted directed graph [Demetrescu and Finocchi, 2003]. Given a

weighted directed graph their algorithm computes a minimal weight feedback arc set. This

is a set of edges with minimal weight and when these edges are removed from the graph, the
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Algorithm 3.7 Creating GW : 〈VW , EW〉 from G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉

Require: G′Mx:y
:
〈
V′Mx:y

, E′Mx:y

〉
1: GW : 〈VW , EW〉, VW := V′Mx:y

, EW := ∅
2: for all vzi 99K v

z
j ∈ E′Mx:y

where z ∈ {x, y} do

3: EW := EW
⋃{

vzi −→ vzj

}
4: weight

(
vzi −→ vzj

)
:=∞

5: end for

6: Let max be some number greater than maximum value of numCycle

7: for all vzi −→ vz
′

j ∈ E′Mx:y
where z 6= z′ ∈ {x, y} do

8: EW := EW
⋃{

vzi −→ vz
′

j

}
9: weight

(
vzi −→ vz

′
j

)
:= max− numCycle

(
vzi −→ vz

′
j

)
+ ω

(
czi ≺ cz

′
j

)
10: end for

11: for all vzi ←→ vz
′

j ∈ E′Mx:y
where z 6= z′ ∈ {x, y} do

12: EW := EW
⋃{

vzi ←→ vz
′

j

}
13: weight

(
vzi ←→ vz

′
j

)
:= max− numCycle

(
vzi ←→ vz

′
j

)
+ ω

(
czi ≡ cz

′
j

)
14: end for

graph is cycle free. We have now converted our mapping graph GMx:y :
〈
VMx:y , EMx:y

〉
to a edge

weighted directed graph GW : 〈VW , EW〉. Therefore, we can directly use their algorithm. We

present their algorithm in our context in Algorithm 3.8.

The algorithm works in two phases. At first, it tries to identify a simple cycle C in the

graph and remove all the edges with minimum weight ε in that cycle. The weight of all the

other edges in that cycle C is reduced by ε. This step is repeated until their are no more cycles

in the graph. Now, the set of all the removed edges is a feedback arc set, though not necessarily

minimal since some of the remove edges may not be participating in the same cycle and hence

it may be possible to add some of them back to the graph. Hence, in the next phase, it tries

to add each edge in the feedback arc set to the graph, in an arbitrary order, as long as that

edge does not lead to any cycle in the graph. The feedback arc set at the end of this phase is

a minimal.

As computed by Demetrescu and Finocchi, the worst runtime complexity of this algorithm

is O (|V| |E|) which in our case turns out to be O
(
|C|
(
|R| + |M|

))
. Moreover this algorithm
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Figure 3.4: Example for edge weighted directed graph

guarantees an approximation ratio bounded by the length of the longest simple cycle in the

graph given in terms of the number of edges independent of their weight.

Example 3.10. For example, consider the edge weighted directed graph GW : 〈VW , EW〉

shown in Figure 3.4. The minimal feedback arc set FAS for this is
{{
d
}
−→

{
x
}}

.

3.6.6 How to get Mapping Set from Feedback Arc Set?

A successful execution of Algorithm 3.8 will give us a minimal set of edges that participated

in some cycle in the graph. We can easily observe that these edges are all going to be the

mapping edges since the non-mapping edges had a weight of ∞ and hence, they will not get

removed at all. Further more, all mapping edges correspond to mapping relationships. So, of

we remove all these mapping relationships from the original mapping set then the remaining

subset of mapping will contain all those mappings that are not corresponding to any cycle in

the mapping graph, that is, they are not causing any inconsistency in the combined ontology.

Algorithm 3.9 shows a sample implementation of this process.

First we are converting the edges in feedback arc set to mapping relationships, which can be

done in O
(
|C|2 |M|

)
. And then we remove all these mapping relationships from the original

mapping set, which can be done in O
(
|M|2

)
. Hence, for this algorithm, we get a runtime

complexity of O
(
|M|

(
|M|+ |C|2

))
.

Example 3.11. For example, consider the FAS =
{{
d
}
−→

{
x
}}

computed earlier and
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Algorithm 3.8 Computing Minimal Feedback Arc Set of GW : 〈VW , EW〉 using Demetrescu

and Finocchi’s algorithm

Require: GW : 〈VW , EW〉
1: FAS := ∅
2: while 〈VW , EW \ FAS〉 is not acyclic do

3: Let C be a simple cycle in EW \ FAS
4: Let ε be the minimum weight of all the edges in C

5: for all edge e ∈ C do

6: weight (e) := weight (e)− ε
7: if weight (e) = 0 then

8: FAS := FAS
⋃
{e}

9: end if

10: end for

11: end while

12: for all e ∈ FAS do

13: if 〈VW , (EW \ FAS)
⋃
{e}〉 is acyclic then

14: FAS := FAS \ {e}
15: end if

16: end for

17: return FAS

original mapping set M5:6 = {c � y, d ≺ x, d � z}. Algorithm 3.9 will thus compute the maxi-

mal mapping subset M′5:6 = {c � y, d � z}.

3.6.7 Complexity

The complexity of various steps is as follows:

• Generating Mapping graph. O (|C|+ |R|+ |M|)

• Generating Mapping subgraph. O
(
|C|2

(
|C|+ |R|+ |M|

))
• Generating Edge weighted directed graph. O

(
|C| |M|

(
|C|+ |R|+ |M|

))
• Computing Minimal weight feedback arc set. O

(
|C|
(
|R|+ |M|

))
• Generating Maximal mapping set. O

(
|M|

(
|M|+ |C|2

))
Hence, we can observe that the total runtime complexity of this approach turns out to be

O
(
|C|
(
|C|+ |M|

)(
|C|+ |R|+ |M|

))
.
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Algorithm 3.9 Computing Mapping subset M′x:y from feedback arc set FAS

Require: FAS, Mx:y

1: M := ∅
2: for all vxi −→ vyj ∈ FAS do

3: for all cxk ∈ vxi and cyl ∈ v
y
j do

4: M := M
⋃{

cxk ≺ c
y
l

}
5: end for

6: end for

7: for all vyj −→ vxi ∈ FAS do

8: for all cxk ∈ vxi and cyl ∈ v
y
j do

9: M := M
⋃{

cxk � c
y
l

}
10: end for

11: end for

12: for all vxi ←→ vyj ∈ FAS do

13: for all cxk ∈ vxi and cyl ∈ v
y
j do

14: M := M
⋃{

cxk ≡ c
y
l

}
15: end for

16: end for

17: M′x:y := Mx:y \M
18: return M′x:y

3.6.8 Correctness

In this approach our objective is simple. We are trying to find out all those mapping

edges in the mapping graph representation that are participating in cycles. As we proved

in Theorem 3.2, there must be at least two mapping edges in each cycle in the mapping

graph. Hence, if we remove those mapping edges, then there will be no cycles in the mapping

graph. The mapping relationships corresponding to the mapping edges are the one that can

cause inconsistency in the combined ontology. Hence, we remove the mapping relationships

corresponding to these mapping edges from the original mapping set. The remaining subset

is correct and does not cause any inconsistency in the combined ontology as the set that has

been removed is corresponding to a feedback arc set that has been computed using a already

established correct algorithm [Demetrescu and Finocchi, 2003]. Hence, the correctness of our

algorithm follows from there. Moreover, since the set being removed is the minimal set, the

set of remaining mappings is a maximal subset of the input mapping set.
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3.7 Discussion

In this chapter we discussed three different approaches to find the solution in polynomial

time. Now, all of these approaches have some benefit over the other, hence, to compute our

final heuristic solution, we will compute maximal mapping subset using all the three algorithm

and then the subset with the maximum cardinality out of those three will be our solution.

We can observe that the simple näıve algorithm is very simple to implement, however, there

is no guarantee of the approximation. It may be useful if the weights of mapping relationships

are provided such that the information helps in maximizing the solution. Moreover, it may be

useful if user has a good way to prioritize the mapping relationships.

The algorithm for biased approach is also very simple to implement. Even though it may

seem that it is better than the simple näıve algorithm, it is not necessarily the case. The

reason is that when we add all the mapping relationships of ≺ or � type, it is possible that

one of those mappings is causing conflicts with all the other mappings that are not yet added.

Thus, none of these mappings would be added to the solution. However, since the total weight

of these mappings may be more than those that were already added to subset, and it may be

the case that they may all get added to the solution set while computing using Algorithm 3.4.

Hence, this is a case when the näıve approach may give a solution set of of higher weight.

Both of these approaches are greedy in nature since both try to add as many mappings as

possible in the subset. Neither of them consider what mappings are being added to the subset

or what mappings are being left out except for whether they cause inconsistency or not. The

graph-based approach tries to take this into consideration. It heuristically tries to identify

the mappings that are actually causing more inconsistencies with other mappings and then

removes them before removing the mappings that are causing less inconsistencies.

There is another subtle advantage of the graph-based approach. We know that our problem

and solution builds over the mappings that were either generated using some other tool or were

user-specified. Now, a lot of times very few of these mappings may cause inconsistency. Since

the graph-based approach starts with all the mappings and removes a mapping at a time,

occasionally, it will need to check for consistency fewer number of times than the other two
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approaches that try to add a mapping at a time and check for consistency after each addition.
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CHAPTER 4. RESULTS AND EVALUATION

In this chapter we discuss how we evaluated our algorithms. First, we will discuss about the

implementation details. Then, we will compare the accuracy of our algorithms by comparing

their results with the optimal results. Later, we will compare our heuristic algorithm with each

other.

4.1 Implementation Details

We chose Java language to implement all the algorithms. Our algorithms were designed

to work using simple data structures corresponding to the ontologies and mapping sets. Even

though the algorithms themselves are independent of the language in which the input ontologies

were specified; we still added an abstraction layer that can read ontologies specified in OWL

and convert those to our data structures. The simple reason to choose OWL was that it is one

of the widely used ontology specification language.

Following is the list of all the tools and libraries that were used to implement our solution:

• JDK 1.6.0 12. We decided to use Java as the language for implementing and testing

our solution. More details about Java can be found at http://java.sun.com/javase/.

• JGraphT 0.8.0. JGraphT is a free open source Java graph library of several useful

algorithms. We chose to use it since it supports directed graphs, weighted and labeled

edges, subgraphs, and most importantly, lets the developer use any object as vertex.

More information about JGraphT is available at http://jgrapht.sourceforge.net/.

We note that JGraphT does not allow to use bi-directional edges. Hence, we had to

modify the algorithms to add support for bi-directional edges.

http://java.sun.com/javase/
http://jgrapht.sourceforge.net/
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• OWL API 2.2.0. OWL API is an open source Java implementation for OWL. More

details are available at http://owlapi.sourceforge.net/.

• Pellet 2.0.0 RC5 Pellet is an open source Java reasoner for OWL. We used Pellet in

combination with OWL API to parse input OWL ontologies. More details about Pellet

can be found at http://clarkparsia.com/pellet/.

• Eclipse 3.4.1. Eclipse is a free Java IDE. More details about Eclipse can be found at

http://www.eclipse.org/.

4.2 Evaluating Accuracy of Heuristic Approach

In order to evaluate the accuracy of heuristic approach, we first implemented all the three

algorithms, viz, Näıve Approach (Section 3.4.2), Biased Approach (Section 3.5.2), and the

Graph-based Approach (Section 3.6.1). The maximum of the three results returned by them is

considered the result by the heuristic approach. Further, we also implemented the brute force

algorithm (Section 3.1.2). The result obtained by it is considered to be the optimum result.

We compared these two results against each other.

4.2.1 Test Setup

It was a difficult choice to decide what tests to perform in order to compare the accuracy

of our algorithms, because we do not know any benchmark test cases. We decided to generate

random ontologies and mapping sets and then use them as input for our algorithms. Previ-

ously Wang et al. [2006] surveyed real world ontologies and presented the distribution of the

ontologies with respect to the number of concepts and relationships among other details. For

example, Table 4.1 summarizes the distribution of the ontologies1 with respect to the number

of concepts in those ontologies, as surveyed by them. The number of concepts and relationships

in the random ontologies follows similar distribution.

The random ontologies were generated as follows. The number of concepts in each ontology

was determined on the basis of the distribution shown in Table 4.1. The number of relationships

1Additional information was obtained by Wang et al. [2006] to obtain these results

http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://www.eclipse.org/
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Table 4.1: Distribution of Ontologies with respect to No. of Concepts

No. of Concepts No. of Ontologies (%)

0 – 50 61.5%

51 – 100 16.8%

101 – 150 6.4%

151 – 200 3.9%

201 – 250 1.4%

251 – 300 1.1%

301 – 7922 8.5%

in each ontology was further determined on the basis of distribution of relationships with

respect to the number of concepts in the ontology. After selecting two ontologies at random

from the generated set of ontologies, we generated random mapping sets. For the sake of

simplicity, we used unit weight for each mapping relationship. We generated multiple mapping

sets of size less than 32 and ran the algorithms with this input mapping set. We restricted

the number of mappings to 31 since the performance of the brute force drastically degraded

beyond this (takes several hours for single execution). This completes our setup.

4.2.2 Results

Figure 4.1: Result Distribution (Heuristic vs. Optimal)
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Figure 4.1 captures the performance of the heuristic solution. Out of all the test cases that

we ran (with input mapping size less than 32) 97% of the times the heurstic solution was as

good as the optimal solution. Moreover, among all the cases in which the heuristic solution

differed from the optimal, 94% cases differed by only 1 mapping whereas, the remaining differed

by only 2 mappings with respsect to the optimal.

Figure 4.2: Comparison of Heuristic and Optimal results with respect to Input Size (only in

case of difference)

Figure 4.2 depicts the cases in which the heuristic result was not as good as the as the

optimal result. We have ordered the tests in increasing order of the number of input mappings.

The graph clearly shows that for most of the cases, the difference between the two results was

only 1.

4.3 Comparing the Heuristic Approaches against each other

4.3.1 Random Ontologies and Mappings

Apart from testing the accuracy of heuristic algorithms, we also compared the algorithms

with each other. We followed the same test setup as discussed in the previous section. However,

this time we did not restrict the number of mappings in the mapping set.

Figure 4.3 captures the performance of individual heuristic algorithms. Out of all the test
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Figure 4.3: Result Distribution (Graph-based vs. Biased vs. Simple Näıve)

cases that we ran 88% of the times the graph-based heurstic algorithm outperformed the other

two. This also means that almost 12% times either of the other two algorithms were better

than the graph-based approach. Hence, it makes sense that we are using the maximum of the

three in order to determine our final heuristic result.

Table 4.2: Improvement in the result computed by Graph-based Algorithm (input mapping

size greater than 100)

Difference in Cases when Graph-based was better than

Number of Mappings Simple Näıve Biased

0 – 100 73.62% 94.60%

101 – 200 7.22% 3.29%

201 – 300 2.66% 0.74%

301 – 400 2.76% 0.29%

401 – 500 2.52% 0.34%

501 – 600 2.00% 0.29%

601 – 700 1.56% 0.05%

701 – 800 1.62% 0.10%

801 – 900 1.14% 0.10%

901 – 1000 1.00% 0.10%

1000+ 3.90% 0.10%

Table 4.2 illustrates the importance of the graph-based approach. The first column lists the

number of mappings that the result obtained graph-based algorithm had more than the other
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algorithms. The other two columns lists the percentage of all the cases when that algorithm

had as many less mappings in the solution as specified in the first column. The cases that we

considered here are all the ones when the input mapping set size was more than 100. It is

easy to note that for a lot of cases there is a huge difference in the result computed by these

algorithms. Hence, this shows the importance of graph-based approach over the other two

algorithms.

4.3.2 Real World Ontologies and Mappings

Table 4.3: Performance of the Algorithms while testing for Real World Ontologies and

Mappings

Ontology Total Total No. of Avg. Execution Time (in ms)

Names Classes Relationships Mapping Simple Biased Graph-based

animals (A, B) 17 19 9 7 2 1

people+pets (A, B) 116 147 58 100 90 2

russia (C, D) 225 243 86 264 285 2

russia (1, 2) 314 327 70 336 286 3

russia (A, B) 254 275 103 374 379 3

Sport (Soccer, Event) 570 558 148 1326 1332 8

Tourism (A, B) 814 850 190 2827 2754 124

In order to satisfy this further, we compared these three algorithms for real world ontologies

and mappings such that there were very few inconsistencies. We chose to use the test ontologies

and corresponding mappings given by “A Framework for Ontology Alignment and Mapping”

[Ehrig and Sure, 2005]. Table 4.3 lists down the details of those ontologies and the average time

taken for executing the three algorithms 10 times. Figure 4.4 compares the average execution

time for these three algorithms on a logarithmic scale with respect to the increase in the size

of the given ontologies and mappings.

It is clear from the table that the graph-based algorithm clearly performs much better than

the other two algorithms. Since the input mappings were manually detected, they are almost

accurate. Hence, as discussed in Section 3.7, the graph-based algorithm detects the solution

very quickly. However, the other algorithms need to check for consistency whenever they try
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Figure 4.4: Comparison of average execution time for Simple Näıve, Biased, and Graph-based

with respect to the increase in the size of the given ontologies and mappings

to add a mapping to the solution set, and hence, they end up performing poorly.
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CHAPTER 5. SUMMARY AND DISCUSSION

In this chapter we will first summarize our work and then discuss some of the ways in which

this work can be extended in future.

5.1 Summary

Through this work we have tried to study the problem of identifying the maximum consis-

tent subset of mappings that may be used to combine two ontologies such that the combined

ontology does not have any contradictory relationships. Therefore, we are trying to assist the

process of combining two ontologies – a key step in information integration.

We present the problem of identifying the maximum consistent subset of a given mapping

set that can be used to combine two consistent ontologies such that the resulting ontology also

remains consistent. We formally define the optimization version of this problem within our

scope. We also show that the problem is NP-hard by reducing the Minimum Feedback Arc Set

in Bipartite Tournament graphs to it.

Then we discuss three different approaches to find an approximate solution for this problem.

Each one had some benefit over the other. Two of these approaches, viz. simple näıve and

biased approach are very simple to implement. Both of them are greedy in nature as each

of them tries to increase the weight of the subset being computed. Neither of them consider

what mappings are being added to the subset or what mappings are being left out except for

whether they cause inconsistency or not. Therefore, each of them require several consistency

checks. However, as shown by our results, for a random set of mappings there are instances

when these approaches actually perform better than the third approach that we discussed.

The third and final approach that we discussed to find a heuristic solution to our problem is
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a graph based approach. In order to construct this solution, we model our problem as a graph

problem, in particular as an edge weighted directed graph, and then use a known heuristic

to identify minimal weight feedback arc set of this graph. We showed a simple construction

that can be used to convert an instance of our problem to an instance of this graph problem.

We also showed how we can use the known heuristic in our problem setting and how we can

compute the mapping set back from the feedback arc set. As shown by our results, this solution

usually performs better for the mappings that were determined manually or using some other

tool.

Finally, we study the performance of all these approaches. We randomly generated several

ontologies and sets of mappings between them to study the performance of our algorithms.

The size of ontologies were chosen to be similar to the real world ontologies. We used a brute

force solution to compute the optimal solution for this random setting and we compared our

algorithms against this optimal. We found that the 97% of the times our solution was as

accuate as this optimal solution. We also compared the three approaches against each other

by studying them for the real world ontologies and mappings. We found that graph based

approach outperforms the other two approaches in the real world setting.

5.2 Future Work

There is a lot of scope on improving and extending this work. Some of the suggested areas

are as follows:

• In our work we considered the mapping relationship to be a relation between two classes,

as defined in Definition 2.8. In Appendix B, we extend the problem by considering the

relationships that are be a relation between two sets of classes, as defined in Defini-

tion B.1. We also discuss an approach that may be used to extend the graph based

solution discussed in Section 3.6. In future, it will be worthwhile to study this approach.

• We assumed unit weight for the given mappings. It will be useful to study the perfor-

mance of the algorithm for variable weight.
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• Even though we tried to study the performance of our algorithms against ontologies

generated at random, we had to restrict the number of mappings in the mapping set to

a small value since the performance of brute force algorithm (that we used to determine

optimal solution) drastically degraded beyond that. It will be worthwhile to study the

performance of the algorithm for larger mapping sets.

• In this work, we expect to have a set of identified mappings between two ontologies that

need to be combined. Our approach can be further extended to compare the performance

of tools that are used to generate these mappings.

• It will be worthwhile to extend the prototype implementation into a more user friendly

application or a tool.

• As with several heuristic solutions, it may be possible to further improvise this solution.
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APPENDIX A. NOTATIONS

Table A.1: Notations

Symbol Meaning

O Set of all ontologies, O = {O1,O2, . . . }
Ox xth ontology where x ∈ N, Ox : 〈Cx, Rx〉
Cx Set of classes, Cx = {cx1, cx2, . . . }
cxi ith class

Rx Set of relationships, Rx = {rx1, rx2, . . . }
rxp pth relationship, rxp ∈

{
cxi ≺ cxj , cxi ≡ cxj

}
GOx Ontology graph for Ox, GOx : 〈VOx , EOx〉
VOx Set of vertices, VOx = {vx1, vx2, . . . }
vxi ith vertex (set of equivalent classes), vxi =

{
cxi1 , c

x
i2
, . . .

}
EOx Set of directed ontology edges, EOx = {ex1, ex2, . . . }
exp pth directed ontology edge, vxi 99K vxj
Mx:y Set of mapping relationships between Ox and Oy, Mx:y =

{
rx:y1 , rx:y2 , . . .

}
rx:yp pth mapping relationship, rx:yp ∈

{
cxi ≺ c

y
j , c

x
i � c

y
j , c

x
i ≡ c

y
j

}
OMx:y Ontology after combining Ox, Oy, and Mx:y, OMx:y :

〈
CMx:y , RMx:y

〉
GMx:y Mapping graph for OMx:y , GMx:y :

〈
VMx:y , EMx:y

〉
VMx:y Set of vertices, VMx:y =

{
vx1, v

x
2, . . . , v

y
1, v

y
2, . . .

}
EMx:y Set of directed edges, EMx:y =

{
ex1, e

x
2, . . . , e

y
1, e

y
2, . . . , e

x:y
1 , ex:y2 , . . .

}
ex:yp pth mapping edge, ex:yp ∈

{
vxi −→ vyj , v

y
j −→ vxi , v

x
i ←→ vyj

}
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APPENDIX B. PROBLEM EXTENSION

So far we have considered simple mappings between two ontologies. Now, here we extend

our graph-based algorithm to handle other complicated relationships between two ontologies.

Complex Mapping Relationships

Earlier in Definition 2.8 in Section 2.4 we defined a mapping relationship as a relation

between two classes such that each class is from different given ontologies. Now, even though

that definition allows us to related two classes, it does not allow us to capture relationships

that may exist between a group of classes.

Example B.1. Consider the following example ontologies:

O1 :

〈


MultipediaComputer,

InputPeripherals,

OutputPeripherals,

Keyboard, Mouse,

Speakers, Monitor,

TV TunerCard



,



InputPeripherals ≺MultimediaComputer,

OutputPeripherals ≺MultimediaComputer,

Mouse ≺ InputPeripherals,

Keyboard ≺ InputPeripherals,

Speakers ≺ OutputPeripherals,

Monitor ≺ OutputPeripherals,

TV TunerCard ≺MultimediaComputer



〉

O2 :

〈 EntertainmentDevices,

Television, Radio

 ,

 Television ≺ EntertainmentDevices,

Radio ≺MultimediaComputer


〉

Figure B.1 shows the ontology graphs corresponding to O1 and O2 for better visualization.

Now, some of the possible mappings between the two ontologies may be:

MultimediaComputer without InputPeripherals is equivalent to Television (B.1)
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The important thing to note here is that the relationship holds only when everything that

constitutes a MultimediaComputer and that is not an InputPeripherals in O1 is equivalent

to a Television in O2.

(a) GO1

(b) GO2

Figure B.1: Example for Complex Mapping Relationship (we skip the { and } symbols in

vertices for simplicity)

Consider another possible mapping:

OutputPeripherals and TV TunerCard together are equivalent to Television (B.2)

It is important to note here that both OutputPeripherals and TV TunerCard together are

equivalent to Television. None of them is equivalent to Television on its own.

This example shows that there is a need for us to enhance the definition of mapping
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relationship in a way which can capture these scenarios.

Definition B.1 (Mapping Relationship). Given ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉,

a mapping relationship rx:y, is a relation C′xRC′y between any two subset of classes C′x ⊆ Cx,

C′y ⊆ Cy where R is either of the following:

≺ Subclass relation. C′x ≺ C′y represents that all classes in the set C′x together are

subclass of all classes in set C′y, that is, ∀cxi ∈ C′x, c
y
j ∈ C′y : cxi ≺ c

y
j

� Super class relation. C′x � C′y represents that all classes in the set C′x together are

super class of all classes in set C′y, this is, ∀cxi ∈ C′x, c
y
j ∈ C′y : cxi � c

y
j

≡ Equivalence relation. C′x ≡ C′y represents that all classes in the set C′x together are

equivalent to all classes in set C′y, this is, ∀cxi ∈ C′x, c
y
j ∈ C′y : cxi ≡ c

y
j

Note. We note that the properties of the relations defined in Section 2.1 still hold.

Remark. Now, this is quite broad definition of mapping relationship and this way, along

with some additional symbols, we can capture the scenarios that we discussed earlier. For e.g.

Equation (B.2) can be represented as

{OutputPeripherals, TV Tunercard} ≡ {Television}

and Equation (B.1) can be represented as

MultimediaComputer \ InputPeripherals ≡ {Television}

where a \ b means that all subclasses of a except for b.

We can extend this for other cases like, for example, when we want to relate some of the

super classes of a class, rather than the subclasses. We note that all this can be achieved with

the help of some additional symbols and for the remaining discussion, we will not consider how

this is being done.
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Simple Näıve Approach and Biased Approach

The simple näıve approach (Section 3.4) and the biased approach (Section 3.5) presented

earlier would still work fine. We can view a complex mapping relationship defined in Defi-

nition B.1 as a group of simple mapping relationships as defined Definition 2.8. Now, at a

time rather than adding one simple mapping and checking for consistency, in order to decide

whether that mapping will be retained or not; we will add this group of simple mappings and

check for consistency. If the combined ontology is consistent, then we retain this complex

mapping relationship, otherwise, we ignore it.

Graph-based Approach

Here we will present how an addition of |M| special vertices to our mapping graph will

help us in solving the problem containing mapping relationships with little change to our

graph-based heuristic approach.

Earlier in Section 3.3 we showed that we will connect two vertices of different ontology

graphs with a special mapping edge that corresponds to a mapping relationship. Now, we

modify that construction. Now, rather then joining the vertices of different ontology graphs

directly with edges, we will introduce some intermediate vertices, called corridor vertices with

some special properties. Here is how we will represent our mapping graph now.

Given any two ontologies Ox : 〈Cx, Rx〉 and Oy : 〈Cy, Ry〉 and a mapping set Mx:y (con-

taining complex mapping relationships as defined in Definition B.1), GMx:y :
〈
VMx:y , EMx:y

〉
represent the mapping graph generated by combining GOx and GOy using Mx:y where,

VMx:y is a finite set of vertices, such that VMx:y = VOx

⋃
VOy

⋃
V

V is a finite set of corridor vertices, that is V =
{
∂x1, ∂

y
1, ∂

x
2, ∂

y
2, . . .

}
such that |V| = 2 |Mx:y|

and ∀∂xp ∈ V : ∃∂yp ∈ V such that ∂xp and ∂yp are connected with a mapping edge

EMx:y is a finite set of labeled directed edges such that EMx:y = EOx

⋃
EOy

⋃
E
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E is a set of mapping edges generated using the mapping relationships such that each edge

is either of the following:

– vxi −→ ∂xp

– ∂xp −→ vxi

– vxi ←→ ∂xp

– ∂xp −→ ∂yp

– ∂yp −→ ∂xp

– ∂xp ←→ ∂yp

– ∂yp −→ vyj

– vyj −→ ∂yp

– ∂yp ←→ vyj

such that

(
C′x ≺ C′y ∈Mx:y

)
⇔
(
∃∂xp −→ ∂yp ∈ E

)
∧
(
∀cxi ∈ C′x vertex

(
cxi
)
−→ ∂xp ∈ E

)
∧
(
∀cyj ∈ C

′
y ∂

y
p −→ vertex

(
cyj

)
∈ E

)
(
C′x � C′y ∈Mx:y

)
⇔
(
∃∂yp −→ ∂xp ∈ E

)
∧
(
∀cxi ∈ C′x ∂xp −→ vertex

(
cxi
)
∈ E

)
∧
(
∀cyj ∈ C

′
y vertex

(
cyj

)
−→ ∂yp ∈ E

)
(
C′x ≡ C′y ∈Mx:y

)
⇔
(
∃∂xp ←→ ∂yp ∈ E

)
∧
(
∀cxi ∈ C′x vertex

(
cxi
)
←→ ∂xp ∈ E

)
∧
(
∀cyj ∈ C

′
y ∂

y
p ←→ vertex

(
cyj

)
∈ E

)
Example B.2. Consider the ontologies O1 and O2 from Example B.1. Figure B.2 shows

mapping graph for M1:2 = {{OutputPeripherals, TV Tunercard} ≡ {Television}}
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Figure B.2: Mapping graph GM1:2 for Example B.2

Property B.1. For each complex mapping relationship rx:yp = C′xRC′y ∈Mx:y there are:

• 2 vertices, viz. ∂xp, ∂
y
p ∈ VMx:y

•
(
|C′x|+

∣∣C′y∣∣+ 1
)

mapping edges in EMx:y

Property B.2 (Path restriction on Corridor Vertices). Given a mapping graph, GMx:y , the

corridor vertices ∂xp or ∂yp participate in any path only if both of them participate in the path

such that either of them precedes other depending on the direction of edge with which they are

connected.

This property implies that any path in which a corridor vertex participate, the mapping

edge with which this corridor vertex is connected to the other corridor vertex will also partic-

ipate. This restriction is very useful us, since it also means that any cycle in which a corridor

vertex participates, even the mapping edge with which it is connected to the other corridor

vertex will participate. Moreover, if this particular mapping edges between two corridor ver-
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tices is removed along with the corridor vertices themselves, then all the other mapping edges

with which the corridor vertices are connected to other vertices will also get removed. In

effect, removing one complex mapping relationship will mean none of the classes involved in

the relationships will be anymore connected (they may be still connected due to some other

mapping relationship).

Now, the remaining part of the solution is straight-forward. When constructing the edge

weighted directed graph, all the edges other than those connected by two corridor vertices are

given a weight of∞ so that they do not get removed while computing the minimal feedback arc

set. Therefore, only edges that will constitute the feedback arc set will be the mapping edges

between two corridor vertices. Moreover, whenever such an edge is removed, the corridor

vertices connected by that mapping edge will not participate in any more cycles, since the

conditions discussed above won’t meet. Once the feedback arc has been computed, we can

compute the mapping subset directly by removing all the mappings corresponding to them

from the original set of mappings.
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Guo, J., Hüffner, F., and Moser, H. (2007). Feedback arc set in bipartite tournaments is

np-complete. Inf. Process. Lett., 102(2-3):62–65.

Johnson, D. B. (1975). Finding all the elementary circuits of a directed graph. SIAM Journal

on Computing, 4(1):77–84.

Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology mapping: the state of the art. Knowl.

Eng. Rev., 18(1):1–31.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and Thatcher,

J. W., editors, Complexity of Computer Computations, pages 85–103. Plenum Press.

Kleinberg, J. and Tardos, E. (2005). Algorithm Design. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

Shvaiko, P. and Euzenat, J. (2008). Ten challenges for ontology matching. pages 1164–1182.

Wang, T. D., Parsia, B., and Hendler, J. (2006). A survey of the web ontology landscape. In

International Semantic Web Conference, pages 682–694.


	2010
	Identifying and eliminating inconsistencies in mappings across hierarchical ontologies
	Bhavesh Sanghvi
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Background
	1.1.1 Ontology
	1.1.2 Combining Two Ontologies
	1.1.3 Problem

	1.2 Related Work
	1.3 Contributions
	1.4 Organization

	2. PROBLEM DESCRIPTION
	2.1 Ontology
	2.2 Ontology Graph
	2.2.1 Construction
	2.2.2 Complexity
	2.2.3 Function vertex

	2.3 Consistency in Ontology
	2.4 Mapping
	2.5 Problem Statement
	2.5.1 Maximum Consistent Mapping Subset
	2.5.2 Optimization Version
	2.5.3 Decision Version

	2.6 Complexity
	2.6.1 Feedback Arc Set (FAS)
	2.6.2 Minimum Feedback Arc Set (MFAS)
	2.6.3 Problem Complexity


	3. METHODS AND PROCEDURES
	3.1 Brute Force Approach
	3.1.1 Approach
	3.1.2 Algorithm
	3.1.3 Correctness
	3.1.4 Complexity
	3.1.5 Discussion

	3.2 Approximate and Heuristic Approaches
	3.3 Mapping Graph
	3.3.1 Construction
	3.3.2 Condition for Cycle

	3.4 Simple Naïve Approach
	3.4.1 Approach
	3.4.2 Algorithm
	3.4.3 Complexity
	3.4.4 Correctness
	3.4.5 Approximation

	3.5 Biased Approach
	3.5.1 Approach
	3.5.2 Algorithm
	3.5.3 Complexity
	3.5.4 Correctness
	3.5.5 Approximation

	3.6 Graph-based Approach
	3.6.1 Approach
	3.6.2 Useful functions
	3.6.3 How to compute Subgraph?
	3.6.4 How to compute Weights for Edges?
	3.6.5 How to compute Minimum Weight Feedback Arc Set?
	3.6.6 How to get Mapping Set from Feedback Arc Set?
	3.6.7 Complexity
	3.6.8 Correctness

	3.7 Discussion

	4. RESULTS AND EVALUATION
	4.1 Implementation Details
	4.2 Evaluating Accuracy of Heuristic Approach
	4.2.1 Test Setup
	4.2.2 Results

	4.3 Comparing the Heuristic Approaches against each other
	4.3.1 Random Ontologies and Mappings
	4.3.2 Real World Ontologies and Mappings


	5. SUMMARY AND DISCUSSION
	5.1 Summary
	5.2 Future Work

	A. NOTATIONS
	B. PROBLEM EXTENSION
	BIBLIOGRAPHY

